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ABSTRACT

Circadian rhythms originate from intertwined feedback processes in genetic regulatory net-
works. Computational models of increasing complexity have been proposed for the molec-
ular mechanism of these rhythms, which occur spontaneously with a period on the order of
24 h. We show that deterministic models for circadian rhythms in Drosophila account for a
variety of dynamical properties, such as phase shifting or long-term suppression by light
pulses and entrainment by light/dark cycles. Stochastic versions of these models allow us to
examine how molecular noise affects the emergence and robustness of circadian oscillations.
Finally, we present a deterministic model for the mammalian circadian clock and use it to
address the dynamical bases of physiological disorders of the sleep/wake cycle in humans.

I. INTRODUCTION: THE COMPUTATIONAL BIOLOGY
OF CIRCADIAN RHYTHMS

Most living organisms have developed the capability of generating autonomously
sustained oscillations with a period close to 24 h. The function of these so-called
circadian rhythms is to allow the organisms to adapt their physiology to the natural
alternation of day and night. Circadian rhythms are endogenous because they can
occur in constant environmental conditions (e.g., constant darkness). During the
last two decades, experimental studies have shed much light on the molecular
mechanism of circadian rhythms, which represents a long-standing problem in
biology. In all eukaryotic organisms investigated so far, the molecular mechanism
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of circadian oscillations relies on the negative feedback exerted by a clock protein
on the expression of its gene (Hardin et al. 1990; Glossop et al. 1999, Lee et al.
2000; Alabadi et al. 2001; Reppert and Weaver 2002).

Even before details were known about their molecular origin, abstract mathe-
matical models were used to probe the dynamic properties of circadian rhythms.
A popular model of this type was provided by the van der Pol equations, which
were originally proposed for sustained oscillations in electrical circuits. Thus, the
van der Pol oscillator has been used for more than three decades for modeling cir-
cadian rhythms (e.g., to account for phase shifts of these rhythms by light pulses
(Jewett and Kronauer 1998)). Another application involving this model pertains to
modeling the enhanced fitness due to the resonance of circadian rhythms with the
external light/dark cycle in cyanobacteria (Gonze et al. 2002c¢).

However, now that the molecular mechanism of circadian rhythms has largely
been uncovered, mathematical models based on experimental observations have
been proposed. Taking the form of a system of coupled ordinary differential equa-
tions, these deterministic models predict that in a certain range of parameter values
the genetic regulatory network at the core of the clock mechanism can produce
sustained oscillations of the limit cycle type. Deterministic models for circadian
rhythms were first proposed for Drosophila and Neurospora (Goldbeter 1995, 1996;
Leloup and Goldbeter 1998; Leloup et al. 1999; Smolen et al. 2001; Ueda et al.
2001), and later for mammals (Forger and Peskin 2003; Leloup and Goldbeter 2003,
2004; Becker-Weimann et al. 2004). The first model showing that oscillations can
originate from negative feedback on gene expression was due to Goodwin (1965),
who showed (already four decades ago) that periodic behavior may originate from
such mode of genetic regulation. Modified versions of the Goodwin model are still
being used to probe properties of circadian rhythms in organisms such as Neu-
rospora (Ruoff et al. 2001). In this chapter we will focus on more recent models,
which rely on more detailed molecular mechanisms.

One limitation of deterministic models is that they do not take into considera-
tion the fact that the number of molecules involved in the regulatory mechanism
within the rhythm-producing cells may be small as observed, for example, in Neu-
rospora (Merrow et al. 1997). At low concentrations of protein or messenger RNA
molecules, molecular fluctuations are likely to have a marked impact on circadian
oscillations (Barkai and Leibler 2000). To assess the effect of molecular noise, it is
necessary to resort to a stochastic approach. Comparing the predictions of deter-
ministic and stochastic models for circadian rhythms shows that robust circadian
oscillations can be observed even when the maximum number of mRNA and
protein molecules is of the order of some tens and hundreds, respectively (Gonze
et al. 2002a, 2002b, 2004a).

The goal of this chapter is to present an overview of deterministic and stochas-
tic models for circadian rhythms. We will begin by presenting (in Section Il) deter-
ministic models for circadian oscillations of the PER protein and its mRNA in
Drosophila. A core model will be presented, which also provides a useful model for
circadian rhythms in Neurospora. This model for Drosophila circadian rhythms will
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be extended to take into account the role of the TIM protein and the control of cir-
cadian behavior by light.

In Section Ill, we consider stochastic versions of these models. We examine how
molecular noise affects the emergence of circadian oscillations and determine the
influence of a variety of factors, such as number of protein and mRNA molecules,
degree of cooperativity of repression, distance from bifurcation point, and rate con-
stants characterizing the binding of the repressor protein to the gene. Two types
of stochastic models are presented: one involves a fully detailed description of indi-
vidual reaction steps, whereas a second relies on a non-developed description of
nonlinear kinetic steps. Both types of models yield largely similar results. The study
of stochastic models for circadian oscillations will allow us to characterize the
domain of validity of deterministic models for circadian rhythms.

In Section IV we return to deterministic approaches and present a model for the
mammalian circadian clock. We use this model to address the molecular bases of
disorders of the sleep/wake cycle in humans, which are associated with dysfunc-
tions of the clock. Computational models can thus be applied to investigating not
only the molecular mechanism of circadian rhythms but the origin of associated
physiological disorders. As discussed in Section V, the example of circadian rhythms
illustrates how more and more complex models have been presented over the years
to account for new experimental observations. We consider the need for such an
increase in complexity of computational models for circadian rhythms, and the
added insights these complex models provide for a better understanding of circa-
dian behavior.

Il. MODELING THE DROSOPHILA CIRCADIAN CLOCK

A. Overview of experimental observations

Some of the most remarkable advances in elucidating the molecular basis of cir-
cadian rhythms have been made in mutants of the fly Drosophila (Konopka 1979,
Hall and Rosbash 1988; Baylies et al. 1993; Dunlap 1993), in which circadian rhythms
affect the rest/activity cycle and the daily eclosion peaks of pupae. Both rhythms
persist in constant darkness or temperature (Pittendrigh 1960). The classic work of
Konopka and Benzer (1971) yielded Drosophila flies altered in their circadian
system, owing to mutations in a single gene called per (for “period”). Four phe-
notypes were characterized: the wild type (per’) has a free-running period of activ-
ity and eclosion close to 24 h; short-period mutants (per) have a period close to
19 h; in long-period mutants (per'), the periodicity increases up to 29 h; and arrhyth-
mic mutants (per”) have lost the circadian pattern of eclosion or activity (Konopka
and Benzer 1971; Konopka 1979). Interestingly, whereas in the wild type the period
remains independent of temperature—a property known as temperature compen-
sation, which is common to all circadian rhythms (Pittendrigh 1960)—the mutants
per and per have lost this property (Konopka et al. 1989). In contrast to the wild
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type, the period of their activity rhythm respectively increases and decreases with
temperature. Accounting for temperature compensation of circadian rhythms
remains an important challenge for computational biology.

A breakthrough for the mechanism of circadian rhythms in Drosophila was the
finding (Hardin et al. 1990, 1992) that per mRNA is produced in a circadian manner.
This periodic variation is accompanied by a circadian rhythm in the degree of abun-
dance of PER. The peak in per mRNA precedes the peak in PER by 4 to 8 h (Zerr
et al. 1990; Zeng et al. 1994). On the basis of this observation, Hardin et al. (1990,
1992) suggested that the Drosophila circadian rhythm results from a negative
feedback exerted by the PER protein on the synthesis of the per mRNA. Post-
translational modification of PER is also involved in the mechanism of circadian
oscillations. Experimental evidence indeed indicates that PER is multiply phos-
phorylated (Edery et al. 1994). It appears that PER phosphorylation plays a role in
the circadian oscillatory mechanism, by controlling the nuclear localization of PER
and/or its degradation (Grima et al. 2002; Ko et al. 2002).

Overexpression of PER in Drosophila eyes represses per transcription and sup-
presses circadian rhythmicity in these cells, without affecting circadian oscillations
in other per-expressing cells in the brain or the circadian rhythm in locomotor activ-
ity. This work shows that the action of PER on transcription is intracellular, and sug-
gests that “each per-expressing cell contains an autonomous oscillator of which
the per feedback loop is a component” (Zeng et al. 1994). Such a mechanism,
based on negative autoregulation of transcription, has also been found in Neu-
rospora (Aronson et al. 1994). The current view is that negative autoregulation of
gene expression by a clock protein represents a unified mechanism for the gener-
ation of circadian rhythmicity in a wide variety of experimental systems (Dunlap
1999; Young and Kay 2001).

B. A core deterministic model for circadian oscillations of
the PER protein and its mRNA

A first model for circadian oscillations in the Drosophila PER protein and its mRNA
is based on multiple phosphorylation of PER and on the inhibition of per tran-
scription by a phosphorylated form of the protein (Goldbeter 1995). This model,
schematized in Figure 13.1a, can be viewed as a minimal core model because it
takes into account a limited number of phosphorylated residues of PER. The model
also applies to oscillations of FRQ and frqg mRNA in Neurospora.

In the model, the per gene is first expressed in the nucleus and transcribed into
per messenger RNA (mRNA). The latter is transported into the cytosol, where it is
translated into the PER protein, Py, and degraded. The PER protein undergoes mul-
tiple phosphorylation, from Pg into Py and from P, into P,. These modifications, cat-
alyzed by a protein kinase, are reverted by a phosphatase. The fully phosphorylated
form of the protein is marked up for degradation and transported into the nucleus
in a reversible manner. The nuclear form of the protein (P\) represses the tran-
scription of the gene.

Computational Systems Biology, A Kriete & R Eils Eds., Elsevier AP 2006.

.



P088786-Ch013.gxd 9/12/05 5:51 PM Page 253 $

Jean-Christophe Leloup, Didier Gonze, and Albert Goldbeter

A B

f

tim mRNA (My) —— TIM, (T;) TIM, (T))
per lra:scripli(m Nuclear PER (Py) ~
tim transcription
- Nuclear
i PER-TIM ——F* .PERI-TIN(I:
/—\ m 4 B complex (Cy) complex (C)
per mRNA (M) — PER, (P)) PER, (P)) PER, (P, —> per transcription Y,
per mRNA (M) ——— PER (P)) PER, (P))

253

Light

TIM, (T, —

PER, (P)—>

Figure 13.1. Schemes of the models for circadian oscillations in Drosophila. (a) The PER model is based
on the sole negative regulation exerted by the PER protein on the expression of its gene (Goldbeter
1995). (b) The PER-TIM model incorporates the tim gene and its product, which forms a complex with
the PER protein. This model is based on the negative regulation exerted by the PER-TIM complex on the
expression of the per and tim genes. The effect of light is to increase the rate of TIM degradation (Leloup

and Goldbeter 1998).

In the model, we consider two successive phosphorylations of PER, which is the
minimal implementation of multiple phosphorylation. A single phosphorylation
step would yield similar results. In fact, sustained oscillations can occur in the
absence of phosphorylation, as shown by the study of a three-variable model rep-
resenting an even simpler model for circadian oscillations (Leloup et al. 1999; Gonze
and Goldbeter 2000; Gonze et al. 2000). We nevertheless focus on a model that
includes multiple phosphorylation, because this process contributes to the mech-
anism of circadian oscillations by introducing a delay in the negative feedback loop.

In the model, the temporal variation of the concentrations of mRNA (M) and of
the various forms of the regulatory protein—cytosolic (Py, P, P,) or nuclear (Py)—is
governed by the following system of kinetic equations (see Goldbeter (1995, 1996)

for further details):

—I(1P2 +k2PN

dt  °Kr+pP; "K,+M
dPo PO 1
— =k,M - +
dt V1K1+Po VZK2+P1
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dt 1K1+Po 2K2+Pw 3K3+P1 4I<4"'PZ
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dt ~ PKs+P 'K,+P YK, +PR
dP,
= kiP, — kP
dt 12 21N

(13.1)

In these equations, the phosphorylation and dephosphorylation terms (with
maximum rates vy, vs, and v,, vs, respectively)—as well as the degradation terms for
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Figure 13.2. Sustained oscillations and limit cycle generated by the PER model. (a) Temporal variation in
per mRNA (M) and in the total amount of PER protein (P,,). (b) Sustained oscillations in total PER
protein and per mRNA (expressed in nM) correspond to the evolution toward a limit cycle when the
system’s trajectory is projected onto the (M, P, plane. Starting from two different initial conditions, the
system reaches a unique closed curve characterized by a period and amplitude that are fixed for the
given set of parameter values. The curves have been obtained by numerical integration of Equations
13.1. Parameter values are v, = 0.76 nM/h, v,, = 0.65 nM/h, k,=0.38 h™', v4=0.95 nM/h, k; =1.9h™", k,
=13h7", K=1nM, Kg=02nM, K, =K, =K;=K,=2nM, n=4, V, =3.2nM/h, V, =1.58 nM/h, V; =
5 nM/h, and V, = 2.5 nM/h. Initial conditions are M =0.1, Pp=P, =P, =Py=0.25 (P,,=1), M=1.9,
and Py=P, =P, =Py =0.8 (Py = 3.2) (see Goldbeter (1995, 1996)).

mRNA and fully phosphorylated PER protein (with maximum rates v,, and vy, respec-
tively)—are all of Michaelian form corresponding to non-cooperative enzyme
kinetics. The repression term takes the form of a Hill equation characterized by the
Hill coefficient n. Repression by Py becomes steeper and steeper as the degree of
cooperativity n increases above unity. Although higher cooperativity favors the
occurrence of sustained oscillations, periodic behavior can also be obtained for n
=1 (i.e., in the absence of cooperativity in repression).

For an appropriate set of parameter values, the model accounts for the occur-
rence of sustained oscillations in continuous darkness (Figure 13.2a). When plotting
the time evolution of one variable (e.g., per mRNA (M)) as a function of another
variable (e.g., the total amount of PER protein (Py)), these oscillations correspond
in such a phase plane to the evolution toward a closed curve, known as a limit cycle
(Figure 13.2b). This name stems from the fact that the same closed trajectory is
reached regardless of initial conditions, as illustrated in Figure 13.2b. In addition to
accounting for the circadian rhythms in mRNA and for protein level, the model
shows how variations in parameters such as the rate of degradation of PER or the
rate of its translocation into the nucleus may change the period of the oscillations,
or even suppress rhythmic behavior (Goldbeter 1995, 1996).

When the model based on PER alone was proposed, the way light affects circa-
dian rhythms in Drosophila was still unknown. In 1996, a series of papers showed,
concomitantly, that a second protein—TIM (for TIMELESS)—forms a complex with
PER, and that light acts by inducing degradation of TIM (Hunter-Ensor et al. 1996;
Lee et al. 1996; Myers et al. 1996; Zeng et al. 1996). These observations paved the
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way for the construction of a more detailed computational model incorporating the
formation of a PER-TIM complex as well as the enhancement of TIM degradation

during the light phase.

C. A ten-variable deterministic model for circadian oscillations in Drosophila

The ten-variable model for circadian oscillations of the PER and TIM proteins and
of per and tim mRNAs in Drosophila (Leloup and Goldbeter 1998; Leloup et al.
1999) is schematized in Figure 13.1b. The mechanism is based on the negative feed-
back exerted by the complex between the nuclear PER and TIM proteins on the
expression of their genes. For each of these proteins, transcription, translation, and
multiple phosphorylation are treated as in the PER model of Figure 13.1a. The fully
phosphorylated proteins PER and TIM are marked up for degradation, and form a
complex that is transported into the nucleus in a reversible manner. The nuclear
form of the PER-TIM complex represses the transcription of the per and tim genes.

Recent experiments indicate that repression is in fact of indirect nature: a
complex between two activators, the CLOCK and CYC proteins, promotes the
expression of the per and tim genes. The PER-TIM complex prevents this activa-
tion by forming a complex with CLOCK and CYC (Darlington et al. 1998; Rutila et
al. 1998; Lee et al. 1999). We return to the effect of such an indirect negative feed-
back in Section IV, restricting the present discussion to the PER-TIM model. In this
model, the variables are the concentrations of the mRNAs (M and M), the various
forms of the PER and TIM proteins (Py, Py, P2, To, T4, T2), and the cytosolic (C) and
nuclear (Cy) forms of the PER-TIM complex. The temporal evolution of the con-
centration variables is governed by the following system of 10 kinetic equations

(see Leloup and Goldbeter (1998) and Leloup et al. (1999) for further details):

dM K M
P = Vep = d pal Ve P - dep
dt Kp +Cn Kmp +Mp
dP P
= kpMp - Vip : +Vy - kaPo
dt Kip +Pg K +P;
dP P P P P
— =Vip . Vap - Vi 1 +Vap . k4P
dt Kip +Pg K, +P, K +P; K4 +P,
dP P P P
2 =Vyp - Vi 2 - kPT,+ kC - Vg —2— - kP,
dt K3p +P1 K4p +P2 KdP +P2
dM+ Kit M+
=V, - Vm - kgM .
dt ~ TKR+CR " Kpr4Mp T (13.2)
dT T T
—= =kgM; -V " +Vyr —— - k4T,
dt Kir +T, Ky +T,
dT T T T T
— =V -V —— - Vs —— 4V, 2 —- kT,
dt Ky +T, Kor +T, Ksr +T, Kar +T,
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These equations correspond to one particular version in a family of possible
models, which differ by details of the molecular implementation of the feedback
mechanism. Thus, rather than considering the formation of a complex between the
fully phosphorylated forms of PER and TIM the complex could be made also (or
instead) between the non-phosphorylated or mono-phosphorylated forms of the
proteins. These other versions of the basal model yield largely similar results.

The various terms appearing in Equations 13.2 are similar to those of Equations
13.1. We have added nonspecific degradation terms, characterized by the rate con-
stants kg, kyc, and kgy. These linear terms are generally of negligible magnitude,
and are not essential for oscillations. Their inclusion ensures the existence of a
steady state when the specific protein degradation processes are inhibited. In
Equations 13.2, parameter vgr represents the maximum value of the TIM degrada-
tion rate. This is the light-sensitive parameter, which will be set to a constant low
value during continuous darkness, and to a constant high value during continuous
light. In a light/dark cycle, v4r will vary in a square-wave manner between these two
extreme values. The square-wave corresponds well to laboratory conditions under
which light varies in an all-or-none manner. The natural variation of light is of course
smoother, and other waveforms should be considered to address the effect of vari-
ations of luminosity under natural light/dark cycles.

Much as the PER model, the model based on the formation of the PER-TIM
complex can account for sustained autonomous oscillations originating from neg-
ative auto-regulatory feedback. Now, however, we may address the dynamic behav-
ior of the model in various lighting conditions, by incorporating suitable changes
in parameter vgr. Thus, as illustrated in Figure 13.3, sustained oscillations can occur

>

Figure 13.3. Circadian oscillations in the PER-TIM model. From top to bottom, the curves correspond to
(a) sustained oscillations in continuous darkness, (b) entrainment by a light/dark cycle of 24 h period
(12:12 LD), and (c) damped oscillations in continuous light. The LD cycle is symbolized by the
alternation of white and black bars. Continuous darkness is symbolized by the alternation of gray and
black bars. Shown is the temporal variation in per and tim mRNAs (Mp, M+) and in the concentration of
nuclear PER-TIM complex (Cy). The curves have been obtained by numerical integration of Equations
13.2 (Leloup and Goldbeter 1998). Parameter values are vip = 0.8 nM h™, vy =1 nMh™, v =
0.8nMh™, vy =0.7nMh™, Kpp = Koy =02 0M, kp = kg =0.9h", vpp=vgr=2nMh™, k= 1.2 h7", k,
=02h", ks=12nM"h™", ky,=0.6 h™, Kp =Ky =1nM, Kgp = Kir = 0.2 1M, n =4, Kip = Kyt = Kop = Kor
= Ksp = Ksy = Kyp = Ky = 2 1M, kg = ke = kgu = 0.01 h™', Vip = Vir=8nMh™, Vop = Vyr = 1nM b,
Vip=Vir=8nMh™, and Vip = V4r = 1 nM h™'. Parameter v is increased from 2 nM/h in the dark phase
to 5 nM/h in the light phase (Leloup and Goldbeter 1998).

Computational Systems Biology, A Kriete & R Eils Eds., Elsevier AP 2006.

.



P088786-Ch013.gxd 9/12/05 5:51 PM Page 257 j\%

Jean-Christophe Leloup, Didier Gonze, and Albert Goldbeter

Per and Tim mRNAs (M, M;) Per and Tim mRNAs (M, M;)

Per and Tim mRNAs (M, M;)

0 48 96 144 192 240 288

Time (h)

336

0.8

0.6

0.4

Nuclear PER-TIM Complex, C Nuclear PER-TIM Complex, C

Nuclear PER-TIM Complex, C

257

Computational Systems Biology, A Kriete & R Eils Eds., Elsevier AP 2006.

.



P088786-Ch013.gxd 9/12/05 5:51 PM Page 258 $

258 Computational Models for Circadian Rhythms: Deterministic
Versus Stochastic Approaches

in continuous darkness (DD), but damped oscillations occur in conditions corre-
sponding to continuous light (LL), as observed in Drosophila (Qiu and Hardin 1996).
In LL, the light-sensitive parameter was chosen so that it takes a high value corre-
sponding to a stable steady state. The disappearance of oscillations can be
explained intuitively: because of enhanced degradation, the TIM protein cannot
reach a level allowing effective repression by the PER-TIM complex. Oscillations
observed in DD with a period close to 24 h can be entrained by a 12: 12 LD cycle
(12 h of light followed by 12 h of darkness). Experimentally, there exists a window
of entrainment, ranging typically from 21 to 28 h (Moore-Ede et al. 1982).

The PER-TIM model allows us to compare theoretical predictions with experi-
mental observations in a variety of cases. A first comparison pertains to entrain-
ment by LD cycles of varying photoperiod. As shown by the experiments of Qiu
and Hardin (1996), the peak in per mRNA always follows the transition from the L
to the D phase by about 4 h. A similar result is obtained in the PER-TIM model
(Figure 13.4). The lag after the L to D transition appears to be the same regardless
of the duration of the light phase, because the level of TIM has decreased to a
minimum value at the end of the L phase, and the time required for the PER-TIM
complex to accumulate during the dark phase above the threshold for repression
remains unchanged.

Another key comparison pertains to the phase shifts induced by light pulses in
continuous darkness. Depending on the phase at which these perturbations are
made, circadian oscillations can be either advanced or delayed. Alternatively, no
phase shift may occur. These data yield a phase response curve (PRC) when the
phase shift is plotted as a function of the phase of perturbation. The PRC is an
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Figure 13.4. Phase locking of the per mRNA oscillations in the PER-TIM model. The three curves
correspond to entrainment by a light/dark cycle of 24 h period but with different photoperiod:

(@) 8:16 LD cycle, (b) 12: 12 LD cycle, and (c) 16 : 8 LD cycle. The LD cycles are symbolized by the
alternation of white and black bars. The curves have been obtained by numerical integration of
Equations 13.2. Parameter values are as in Figure 13.3.
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Figure 13.5. Phase shifting by a light pulse comparison with experiments. (a) Unperturbed oscillations
of phosphorylated TIM (T,). The vertical line through the fourth peak serves as reference for determining
phases shifts. (b—d) Transient perturbations at three different phases of the oscillations, producing,
respectively, a phase delay, a phase advance, or an absence of phase shift. The arrows mark the
beginning of the light pulse and the thick lines indicate both the duration and the effect of this
perturbation (see following). (e) Phase response curve (PRC) obtained by plotting the phase shift as a
function of the phase at which the perturbation is applied. The perturbation takes the form of a 3-h
twofold increase in TIM maximum degradation rate (v4r), triggered by the light pulse. (f and g) PRCs
obtained theoretically (solid lines) for the wild type (panel F) and for the per’ mutant (panel G) in
Drosophila. The theoretical predictions compare well with the experimental observations (dots) based
on data obtained by Konopka and Orr using a 1-min light pulse (redrawn from Figure 2 of Hall and
Rosbash (1987)). The oscillations of the TIM protein (panels A- through D) and the PRCs (panels E
through G) have been obtained by numerical integration of Equations 13.2 (Leloup and Goldbeter
1998). Parameter values are listed in Figure 2 of Leloup and Goldbeter (1998). For the PRCs, the zero
phase is chosen, as in the experiments (Hall and Rosbash 1987), so that the minimum in per mRNA
occurs after 12 h.

important tool in the study of circadian rhythms. We may simulate the effect of light
pulses in the PER-TIM model by transiently increasing the maximum rate of TIM
degradation, vgr. Unperturbed oscillations of fully phosphorylated TIM (T,) are
shown in Figure 13.5a, where the vertical line through the fourth peak will serve as
reference for determining phase shifts triggered by transient perturbations.
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As shown in Figure 13.5b, when the perturbation is applied during the rising
phase of TIM a phase delay is observed. In contrast, a phase advance occurs when
the perturbation is made at the maximum of TIM (Figure 13.5¢), whereas no phase
shift is observed when the pulse is given at the minimum of TIM (Figure 13.5d). The
latter result stems from the fact that when TIM is already at its minimum a transient
increase in TIM degradation remains without effect. Plotting the phase shifts as a
function of the phase of perturbation yields the PRC shown in Figure 13.5¢, where
the arrows 1 through 3 refer to the situations depicted in panels B through D,
respectively. The predictions of the model compare well with the experimental PRC
both for wild-type flies (Figure 13.5f, where the solid curve is the same PRC as in
panel E) and for the per® mutant (Figure 13.5g). The model indicates that the dead
zone in which no phase shift occurs is nearly absent in the per’ mutant because TIM
remains near its minimum for a relatively much shorter time, as a result of the faster
degradation of PER in this mutant (see Figure in Leloup and Goldbeter (1998)).

Obtaining good agreement with experimental observations is not straightfor-
ward, as this requires an appropriate characterization of the biochemical effects of
a light pulse on the circadian clock. In constructing the theoretical PRC of Figure
13.5, we assumed that the effect of the light pulse is to double during 3 h the
maximum rate of TIM degradation. Other combinations of multiplication factor and
duration of increase may also yield satisfactory agreement. The interest of this result
is to predict that the light pulse should have long-lasting biochemical conse-
quences that may outlast the light pulse itself. This prediction is in fact corrobo-
rated by recent experimental observations (Busza et al. 2004).

Other results obtained with the PER-TIM model are of a more counter-intuitive
nature. First, the model shows that in a certain range of parameter values sustained
oscillations of the limit cycle type may coexist with a stable steady state. Such a sit-
uation, known as hard excitation, provides a possible explanation for the suppres-
sion of circadian rhythms by a single light pulse and for the subsequent restoration
of periodic behavior by a second such pulse. This puzzling phenomenon, which has
been observed in a variety of organisms, remains largely unexplained. The model
indicates that over a range of phases corresponding to TIM increase in Drosophila
transient increases in parameter vgr may bring the system from the limit cycle into
the basin of attraction of the stable steady state. A second pulse in vgr may then
bring back the oscillations (Figure 13.6a). Suppression is only possible over a finite
portion of the limit cycle, as shown in Figure 13.6b. The characteristics (duration
and amplitude) of the suppressing pulse change with the phase of perturbation in
this domain (Leloup and Goldbeter 2001). In contrast, a single critical perturbation
suppressing the rhythm exists in the situation described by Winfree (1980), wherein
the stable limit cycle surrounds an unstable steady state. However, suppression is
only transient in that case. The coexistence between a stable steady state and a
stable limit cycle (illustrated in Figure 13.6a) is by no means uncommon, but
a computational model is clearly needed to predict the occurrence of such a
phenomenon.

We were at first surprised to observe that the deterministic PER-TIM model was
also capable of producing chaotic behavior in constant environmental conditions
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Figure 13.6. Long-term suppression of circadian rhythms by a single pulse of light. (a) Permanent
rhythm suppression by a single pulse of light in the PER-TIM model, and restoration of the rhythm by a
similar pulse. At the time indicated by the first arrow, to mimic the effect of a light pulse parameter vqr,
which measures the maximum rate of TIM degradation, is increased during 2 h from the basal value of
1.3 nM h™" up to 4.0 nM h™". Initial conditions correspond to point 3 in panel B. At the time indicated by
a second arrow, a similar change in vq4;, mimicking a second light pulse, is initiated, and the system
returns to the oscillatory regime. The curve is obtained by numerical integration of Equations 13.2 for
the parameter values of Figure 4 in Leloup and Goldbeter (2001). (b) Light pulses, translated into
transient increases in vgr, can permanently suppress the rhythm when applied over a portion of the limit
cycle bounded by the two black bars marked 1 and 2. The trajectory starting from point 3 on the limit
cycle corresponds to the rhythm suppression by the first pulse in a.

(e.g., continuous darkness (Leloup and Goldbeter 1999)). Such autonomous chaos
has previously been shown to originate from the interplay between two instability-
generating mechanisms (e.g., two feedback loops, each of which may produce
sustained oscillations (Goldbeter 1996)). Here, the model contains but a single neg-
ative feedback loop, exerted by the PER-TIM complex. However, the formation of
this complex involves two branches leading to the synthesis of PER and TIM. Chaos
occurs in a relatively small parameter domain when a dynamical imbalance arises
between the synthesis and degradation of the PER and TIM proteins or their
mRNAs. Nonautonomous chaos can also be found in models for circadian rhythms,
as a result of the periodic forcing of the circadian clock by light/dark cycles. The
theoretical study indicates (Gonze and Goldbeter 2000) that the occurrence of such
nonautonomous chaos is favored by the square wave nature of LD cycles: the
domain of entrainment indeed enlarges at the expense of the domain of chaos
when the waveform of the LD cycle progressively changes from square wave to
sinusoidal.

Another use of the PER and PER-TIM models for circadian oscillations in
Drosophila is to address the dynamical bases of temperature compensation (i.e.,
the relative independence of the period of circadian oscillations with respect to
temperature (see Section I.A)). The analysis of the models supports the view (Ruoff
and Rensing 1996) that temperature compensation originates from a balance
between two opposing tendencies: the acceleration of some reactions with
temperature tends to increase the period, whereas the acceleration of other reac-
tions tends to lower it (Leloup and Goldbeter 1997). When the balance is lost (as a
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result of a mutation), temperature compensation fails to occur, as observed in long-
and short-period Drosophila mutants.

This discussion shows how useful deterministic models of moderate complexity
may prove for the study of circadian rhythms. However, the question arises as to
the validity of these computational models when the numbers of molecules
involved in the oscillatory mechanism are small, as may occur for proteins and
mRNAs in cellular conditions. Then, deterministic models may reach their limits,
and it becomes necessary to resort to stochastic approaches. We shall now examine
how stochastic models may account for the emergence of circadian rhythms, and
will turn thereafter to more complex deterministic models proposed for the mam-
malian circadian clock.

11I. STOCHASTIC MODELS FOR CIRCADIAN RHYTHMS

A. Core molecular model for circadian oscillations

To illustrate the stochastic approach to modeling circadian rhythms, it will be useful
to resort to a relatively simple model for circadian oscillations. The model exam-
ined in Section Il.A and schematized in Figure 13.1a provides a core model for cir-
cadian rhythms based on the negative feedback exerted by a protein (which is
referred to in the following as clock protein) on the expression of its gene. As pre-
viously indicated, this model applies to circadian oscillations of the PER protein and
per mRNA in Drosophila, and to the case of Neurospora (Leloup et al. 1999, Gonze
et al. 2000) for which circadian rhythms originate from the negative feedback
exerted by the FRQ protein on the expression of its gene (Aronson et al. 1994; Lee
et al. 2000). The core model contains five variables and is described by Equations
13.1. When the effect of light is incorporated—as was done for the PER-TIM model
discussed in Section Il.B—this model accounts for the occurrence of sustained oscil-
lations in continuous darkness, phase-shifting by light pulses, and entrainment by
light/dark cycles. The model shown in Figure 13.1a will thus serve as a convenient
core model for testing the effect of molecular noise on circadian oscillations. An
even simpler model (governed by a set of three kinetic equations) is obtained when
disregarding multiple phosphorylation of the clock protein (Leloup et al. 1999;
Gonze et al. 2000). The following discussion pertains to the five-variable model,
which includes PER reversible phosphorylation.

B. Molecular noise in the fully developed stochastic version of the core model

The decrease in the total number (N) of molecules in a system of chemical reac-
tions is accompanied by a rise in the amplitude of fluctuations around the state
predicted by the deterministic evolution of this chemical system. These fluctuations,
which reflect intrinsic molecular noise, can be taken into account by describing the
chemical reaction system as a birth-and-death stochastic process governed by a
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master equation (Nicolis and Prigogine 1977). In a given reaction step, molecules
of participating species are either produced (birth) or consumed (death). At each
step is associated a transition probability proportional to the numbers of molecules
of involved chemical species and to the chemical rate constant of the correspon-
ding deterministic model.

To implement such a master equation approach to stochastic chemical dynam-
ics, Gillespie (1976, 1977) introduced a rigorous numerical algorithm. In addition to
other approaches (Morton-Firth and Bray 1998), this method of the Monte Carlo
type is widely used to determine the effect of molecular noise on the dynamics of
chemical (Baras et al. 1990; Baras 1997), biochemical (McAdams and Arkin 1997),
or genetic (Arkin et al. 1998) systems. The Gillespie method associates a probabil-
ity with each reaction. At each time step the algorithm stochastically determines
the reaction that takes place according to its probability, as well as the time inter-
val to the next reaction. The numbers of molecules of the different reacting species
as well as the probabilities are updated at each time step. In this approach (Gille-
spie 1976, 1977), a parameter denoted Q permits the modulation of the number of
molecules present in the system.

To assess the effect of molecular noise on circadian oscillations, we have used
the Gillespie method to perform stochastic simulations of the core deterministic
model governed by Equations 13.1. When the degree of cooperativity of repres-
sion—given by the Hill coefficient n in Equations 13.1-is equal to 4, the core mech-
anism can be decomposed in 30 elementary steps, as indicated in Table 13.1. A
probability of occurrence, proportional to the deterministic rate constant, is asso-
ciated with each of these individual steps. This approach rests on the analysis of a
fully developed stochastic version of the core model for circadian oscillations. In
the following we will show that an alternative (more compact) approach—in which
the nonlinear functions in Equations 13.1 are not decomposed into elementary
steps—yields largely similar results.

C. Robustness of circadian oscillations with respect to molecular noise

The first result obtained with the fully developed stochastic version of the core
model for circadian rhythms is that it is also capable of producing sustained oscil-
lations in conditions of continuous darkness. These oscillations correspond to the
evolution toward a limit cycle, which is shown in the right-hand panels of Figure
13.7b as a projection onto the (M, Py) plane. For comparison, the deterministic oscil-
lations and the corresponding limit cycle are shown in Figure 13.7a. The effect of
molecular noise is merely to induce variability in the maxima of the oscillations. This
is reflected by the noisy appearance of the limit cycle and a thickening of its upper
portion linking the maximum in MRNA with the maximum in nuclear (or total) clock
protein. The noisy stochastic limit cycle surrounds the deterministic limit cycle
(shown as the closed white curve in the lower right-hand panel in Figure 13.7b)
obtained by numerical integration of Equations 13.1 in corresponding conditions
(Gonze et al. 20023, 2002b).

Computational Systems Biology, A Kriete & R Eils Eds., Elsevier AP 2006.

.



P088786-Ch013.gxd 9/12/05 5:51 PM Page 264 $

264

Computational Models for Circadian Rhythms: Deterministic

Versus Stochastic Approaches

Table 13.1. Decomposition of the deterministic model into elementary reaction steps.

Reaction Number

Reaction Step

Probability of Reaction

G+R—2—GR
GR—% G +h,
GR+R —2—GRy,
GRo—& 5 GRy +PR,
GPy, +Py —2 5 GR
GPo—L 5 GR, +R
GPy +Py —2—GRu
GRu —95GRy +R,
[G, GR, GRyy, GRy|—2—M
M+E,—Ka s,
Co—Ke2 s M+E,
Co—Ke g,
M—K M +P,
Py +E —Ko

ke sp+,
clﬁ—mm

P +E; ——>km G
kZZ

kz%

—4=>P+E
—=2 5P +E,

P+E—R s

P+E,—Ka s,
—ke sp, +E,
C4A—>P1+E4
P +E—K
ke sp, +E,
ks
k

k,

wy =a; X G X Py/Q
w, = d; X GPy

wy = a, X GPy X Py/Q
wy = d, X GPyy

ws = a3 X GPry X P/
W = d3 X GPys

w; = ay X GPrs X Py/2
Wg = dy X GPy

Wy =V, X (G + GPy 4+ GPry + GPy)
Wio = koy X M X E,/Q
Wi = ko X C,,

Wi = Ko X C,,

Wis = ki x M

Wis = ki X Py X E1/Q
wis = kip X G

Wie = ki3 X G

Wi7 = kyy X Py X E,/Q
Wig = kpy X G

Wig = ka3 X Gy

Wi = k3 X Py X E5/Q
Wy = k3 X Gy

Wy = ki3 X Gy

Wos = kg X Py X E,/Q
Way = kg X C,

Wis = kg3 X C,

Wae = kg1 X Py X Ej/Q
Wayr = kgy X Cy

Wag = kg3 X Cy

Wag = ky X P,

wio = ky X Py
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Figure 13.7. Deterministic versus stochastic simulations of the core model for circadian oscillations
(schematized in Figure 13.1a). (a) Oscillations obtained in the absence of noise for the deterministic
model governed by Equations 13.1. Sustained oscillations of mMRNA (M) and nuclear clock protein (Py)
in the left-hand panel correspond to the evolution toward a limit cycle shown as a projection onto the
(M, P\) plane in the right-hand panel. (b) Oscillations generated by the stochastic version of the core
model in the presence of noise, for 2= 100 and n = 4. The data, expressed in numbers of molecules of
mRNA and of nuclear clock protein, are obtained by stochastic simulations of the detailed reaction
system (Table 13.1) corresponding to the deterministic version of the core model. In the lower right-
hand panel, the white curve corresponds to the deterministic limit cycle. The latter is surrounded by the
stochastic trajectory which takes the form of a noisy limit cycle.

To assess the robustness of circadian oscillations at low numbers of molecules,
we performed stochastic simulations for decreasing values of Q. For Q = 500, the
number of mRNA molecules varies in the range 0- to 1,000, whereas the numbers
of nuclear and total clock protein molecules oscillate in the ranges 200 to 4,000 and
800- to 8,000, respectively (see left-hand panel in Figure 13.8a). The results in Figure
13.8 show that as Q decreases progressively from the value of 500 down to a value
of 100 or 50 robust circadian oscillations continue to occur in continuous darkness.
The number of MRNA molecules oscillates from 0 to 200 or 0 to 120, whereas the
number of nuclear clock protein molecules oscillates in the range 20 to 800 or 10
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Figure 13.8. Effect of number of molecules on the robustness of circadian oscillations. Shown in rows
A through D are the oscillations in the numbers of molecules of mMRNA and nuclear clock protein, the
projection of the corresponding limit cycle, and the histogram of periods of 1,200 successive cycles, for
Q varying from 500 (A), to 100 (B), 50 (C), and 10 (D). The curves are obtained by stochastic
simulations of the core model (Table 13.1), for n = 4 (other parameters are listed in Table 13.2 where
“mol” stands for “molecule”). For period histograms, the period was determined as the time interval
separating two successive upward crossings of the mean level of mRNA or clock protein. In B and C,
the decrease in the numbers of mMRNA and protein molecules still permits robust circadian oscillations
(see histograms where the mean value (1) and standard deviation (o) of the period are indicated in h),
whereas at still lower numbers of molecules (D) noise begins to obliterate rhythmic behavior (Gonze
et al. 2002b).
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Table 13.2. Parameter values for stochastic simulations.

Reaction Steps

Parameter Values

Steps 1-8

Step 9
Steps 10-12

Steps 13
Steps 14-16

Steps 17-19

Steps 20-22

Steps 23-25

Steps 26-28

Steps 29-30

Forn=4:
a;=0Qmol™" h™, d;, = (160 x Q) h™,
a,=(10x 2 mol" h', d,=(100 x 2 h™,
a;=(100x Q mol™ h™', d; = (10 x ) h™,
a,=(100x Q mol™ h™, d, = (10 x ) h™'

For n = 3:
a,=0Qmol" h™', d,=@80x Q) h”,
a,= (100 x  mol™" h™', d, = (100 x Q) h™,
a; = (100 x 2 mol' h™', d; = Qh™'
For n=2:
a;,=Qmol" h', d,=(40x Q h,
a,=(100x 2 mol'h™", d, = (10 x ) h'
Forn=1:
a;=(10x 2 mol”" h', d; =20 x Q) h™'

v,= (0.5 x ) mol h™'

K = 165 mol™ h™", kp, = 30 h™, kyy = 3 h,
Epior = Ep + Cm =(0.1 x Q) mol

k,=2.0h"

k;; =146.6 mol™ h™", k;, =200 h™", k;; =20 h™'
Eiw=E +C,=(0.3 x £) mol

ky;=82.5mol" h™, k,,=150h™", k,;=15h"",
Eswi=E,+ C,=1(0.2 x ) mol

ks; = 146.6 mol™ h™', k5, =200 h™", k;; =20 h™",
Es o= E; + C3=1(0.3 x ) mol

ky=82.5mol™" h™, k,,=150h", kys=15h7,
E4 tot = E4 + C4 =(0.2x Q) mol

kgr=1650mol™ h™", k;,= 150 h™", ky3=15h7,
Eyior = Eg+ Cy= (0.1 x £2) mol

k;=2.0h", k,=1.0h™

to 600. For these smaller values of ©, the limit cycles are more noisy but the period
histograms calculated for some 1,200 successive cycles indicate that the distribu-
tion remains narrow with a mean free running period u close to a circadian value.
The standard deviation o remains small with respect to the mean period but slightly
increases as the number of molecules diminishes.

A further decrease in the number of molecules (e.g., down to Q= 10) will even-
tually obliterate circadian rhythmicity, and the latter is overcome by noise (Figure
13.8d). At such a low value of €, highly irregular oscillations occur, during which the
number of MRNA molecules varies from 0 to 30 and the number of nuclear protein
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molecules oscillates in the range 5 to 160. Even for such reduced numbers of mMRNA
and protein molecules, however, oscillations are not fully destroyed by noise. The
histogram of periods indicates that the mean is still close to a circadian value, but
the standard deviation is greatly increased. The stochastic approach illustrated in
Figures 13.7 and 13.8 provides us with the unique opportunity of witnessing the
emergence of a biological rhythm out of molecular noise (Gonze et al. 20044,
2004b).

The results in Figure 13.8 were obtained in conditions in which the mean levels
of mRNA and of clock protein differ by one to two orders of magnitude. Similar
results are obtained by means of stochastic simulations when the level of mRNA is
considerably lower than that of the clock protein, as long as the former remains
above a few tens of molecules.

The degree of cooperativity is another parameter that affects the robustness of
circadian oscillations in the presence of molecular noise. Stochastic simulations
were performed with = 100 for values of n ranging from 1 to 4, where n denotes
the total number of protein molecules that bind to the promoter to repress tran-
scription. The results indicate that robustness significantly increases when n passes
from 1 (absence of cooperativity) to values of 2 and above. Changes in standard
deviation of the period show that cooperative repression enhances the robustness
of circadian oscillations with respect to molecular noise (Gonze et al. 2002b).

Stochastic simulations further indicate that circadian oscillations can be entrained
by LD cycles. The effect of light is incorporated into the model by assuming that
the probability of occurrence of the reaction step corresponding to degradation of
phosphorylated clock protein increases during the light phase, as observed in
Drosophila. Of particular interest is that the phase of the entrained rhythm is then
stabilized through periodic forcing by the LD cycle (Figure 13.9). The phase of the
maximum in mRNA of clock protein is of course not constant in these conditions,
because of fluctuations, but its mean value occurs a few hours after the L-to-D tran-
sition, as observed in the case of Drosophila (see also Figure 13.4 for the results
obtained in the corresponding deterministic case).

Additional factors influence the robustness of circadian oscillations with respect
to molecular noise. Among these are the distance from a bifurcation point, and the
magnitude of the rate constants characterizing binding of the repressor to the
gene. To illustrate the first aspect, it is useful to consider the bifurcation diagram
showing the onset of sustained oscillations as a function of a control parameter
such as the maximum rate of clock protein degradation, vy (Figure 13.10). This
diagram, obtained for the core deterministic model of Figure 13.1a governed by
Equations 13.1, shows that as vy is progressively increased from a low initial value
the system at first settles in a stable non-oscillatory state before sustained oscilla-
tions of the limit cycle type arise when vy exceeds a critical value. The amplitude
of the oscillations progressively increases as the value of vy moves away from this
bifurcation point. We now select four increasing values of vy located well below (a)
or just below (b) the bifurcation value, and just above (c) or well beyond (d) it. Sto-
chastic simulations performed for a given value of Q with the fully developed
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Figure 13.9. Effect of molecular noise on circadian oscillations under conditions of periodic forcing by
a light/dark cycle. The data are obtained for 2= 100 and n = 4. (a) Circadian oscillations in the
numbers of mMRNA and nuclear clock protein molecules. (b) Histogram of periods with mean value (1)
and standard deviation (o) indicated in h. (c) Histogram of the time corresponding to the maximum
number of mMRNA molecules over a period. Periodic forcing is achieved by doubling during each light
phase the value ascribed during the dark phase to the parameter (ky;) measuring the probability of the
protein degradation step (Table 13.1). Histograms are determined for some 1,200 successive cycles
(Gonze et al. 2002b).
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version of the core model indicate (Figure 13.11) that circadian oscillations become
less sensitive to molecular noise as the system moves away from the bifurcation
point, well into the domain of periodic behavior.

Finally, among the kinetic parameters that govern the probability of occurrence
of the various individual steps listed in Table 13.1 few have as much influence on
the robustness of circadian oscillations as the rate constants characterizing the suc-
cessive binding of repressor molecules to the gene promoter of the clock protein.
In the case of cooperative binding of four repressor molecules, we have to con-
sider four successive steps of association and dissociation characterized by the rate
constants a;and d (i=1, ... 4) (see steps 1 through 8 in Table 13.1). It will be useful
to divide these rate constants by a scaling parameter y to assess their influence on
the robustness of circadian rhythms with respect to molecular noise. An increase in
v will thus correspond to a decrease in the rate constants a; and d.

In Figure 13.12 are shown the results of stochastic simulations of the core model
fory=1(a), y= 100 (b), and y= 1000 (c). As y increases up to 100 and 1,000, oscil-
lations with larger and larger amplitude and increasing variability of the period are
observed. The oscillations obtained for y= 1 are much more regular. To clarify the
nature of this phenomenon, we examined the deterministic version of the detailed
stochastic model considered in Table 13.1. To the 30 reaction steps listed in Table
13.1 corresponds a deterministic system of 22 ordinary differential equations
(Gonze et al. 2004a). In this fully developed version of the deterministic model,
parameters a; and d, appear explicitly, whereas they only appear in the form of a
single equilibrium inhibition constant (K) in the reduced five-variable deterministic
model governed by Equations 13.1.

The results obtained with the fully developed deterministic model demonstrate
the existence of a bifurcation as a function of the scaling parameter v, as shown by
the bifurcation diagram in Figure 13.13. When v increases above a critical value
close to 100, the system ceases to oscillate and evolves toward a stable steady

>

Figure 13.11. Effect of the proximity from a bifurcation point on the effect of molecular noise in the
stochastic model for circadian rhythms. The different panels are established for the four increasing values
of parameter ky; corresponding to the v4 values shown in Figure 13.10: 0.1 (A), 0.5 (B), 0.7 (C) and 1.5
(d). The values of kg; listed in the left panels, are expressed here in molecules per h. The right-hand
panels show the evolution in the phase plane, whereas the left-hand panels represent the corresponding
temporal evolution of the number of per mRNA and nuclear PER molecules. (A) Fluctuations around a
stable steady state. (B) Fluctuations around a stable steady state close to the bifurcation point. Damped
oscillations occur in these conditions when the system is displaced from the stable steady state. In A
and B, the white dot in the right-hand panel represents the stable steady state predicted by the
deterministic version of the model in corresponding conditions. (C) Oscillations observed close to the
bifurcation point. (D) Oscillations observed further from the bifurcation point, well into the domain of
sustained oscillations. In C and D, the thick white curve in the right-hand panel represents the limit
cycle predicted by the deterministic version of the model governed by Equations 13.1, in corresponding
conditions. The smaller amplitude of the limit cycle in C as compared to the limit cycle in D is
associated with an increased influence of molecular noise. The curves are obtained by means of the
Gillespie algorithm applied to the model of Table 13.1 (Gonze et al. 2002a).
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Figure 13.12. Irregular time series and trajectory in the phase space obtained by stochastic simulations
of the core model for circadian rhythms for y=1 (a), y= 100 (b), and y= 1,000 (c). The curves were
obtained for the model of Table 13.1, with 2 = 100. Other parameter values are given in Table 13.2. The
results should be compared with the bifurcation diagram established in Figure 13.13 as a function of y
for the corresponding fully developed version of the deterministic model. This diagram predicts that the
steady state is stable and excitable for y = 100 and 1,000, whereas sustained oscillations occur for y =1
when the steady state is unstable (Gonze et al. 2004a).
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Figure 13.13. Bifurcation diagram showing the onset of circadian oscillations in the fully developed
version of the deterministic core model, as a function of the scaling parameter v. The latter parameter
divides the association and dissociation rate constants a; and d; characterizing the binding of the
repressor protein to the gene. The curve shows the steady-state level of mRNA, stable (solid line, Msss)
or unstable (dashed line, Mss), as well as the maximum (M, and minimum (M,i,) mMRNA
concentration in the course of sustained oscillations. The diagram was determined by numerical
integration of the 22 kinetic equations governing the dynamics of the fully developed deterministic
model (Gonze et al. 2004a).

state. Numerical simulations performed with the 22-variable deterministic model
for y=1,000, y= 100, and y= 1 show (Gonze et al. 2004a) that for y= 100 the system
still undergoes sustained low-amplitude oscillations. For y = 1,000, the system
evolves toward a stable steady state, as predicted by the bifurcation diagram of
Figure 13.13, but this steady state is excitable: a small perturbation bringing the
system slightly away from the steady state triggers a large excursion in the phase
space, which corresponds to a burst of transcriptional activity, before the system
returns to the stable steady state. This property of excitability also holds for the
limit cycle observed for y=100. Thus, it is also possible to trigger large-amplitude
peaks in gene transcription starting from such small-amplitude oscillations.

These results explain why oscillations predicted by stochastic simulations
become highly irregular when the rate constants a; and d, decrease below a criti-
cal value. As shown by the study of the corresponding detailed deterministic model,
such irregular oscillations reflect repetitive noise-induced large excursions away
from a stable excitable steady state or from a small-amplitude limit cycle close to
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the bifurcation point. The values of the bimolecular rate constants a, used by Barkai
and Leibler (2000) for simulating the circadian models of Figures 13.1a and 13.1b
were probably below the critical value corresponding to sustained oscillations,
which may explain their failure to obtain robust circadian oscillations in these
models. When y decreases (i.e., when the values of parameters a; and d increase)—
as in the case considered in Figure 13.8, which corresponds to y= 1—the oscilla-
tions become more regular and more robust, because the system operates well
into the domain of sustained large-amplitude oscillations. The high values of
parameters a and d, corresponding to y= 1 are of the order of those determined
experimentally (Gonze et al. 2002b).

D. Non-developed stochastic models for circadian rhythms

The nonlinear terms appearing in the kinetic Equations 13.1 of the deterministic
core model do not correspond to single reaction steps. These terms rather repre-
sent compact kinetic expressions obtained after application of quasi-steady-state
hypotheses on enzyme-substrate or gene-repressor complexes. The resulting
expressions are of the Michaelis—Menten type for enzyme reaction rates, or of the
Hill type for cooperative binding of the repressor to the gene promoter. In the fully
developed stochastic version of the core model, all reactions were decomposed
into elementary steps (see Table 13.1).

Alternatively, we may resort to a simpler approach in which we attribute to each
linear or nonlinear term of the kinetic equations a probability of occurrence of the
corresponding reaction step (Gonze et al. 2002a). Then, in contrast to the treatment
presented previously for the fully developed stochastic version we do not decom-
pose the binding of the repressor Py to the gene promoter into successive ele-
mentary steps, and rather retain the Hill function description for cooperative
repression. A similar approach is taken for describing degradation of mRNA, trans-
lation of MRNA into protein, phosphorylation, or dephosphorylation reactions; and
enzymatic degradation of fully phosphorylated clock protein and its reversible
transport into and out of the nucleus. Some of these steps are of the Michaelian
type, whereas others correspond to linear kinetics.

The comparison of stochastic simulations performed with the fully developed and
non-developed versions of the core model showed that the two versions yield
largely similar results (Gonze et al. 2002a). On the basis of these findings, a non-
developed stochastic version of the 10-variable deterministic model governed by
Equations 13.2, incorporating the formation of the PER-TIM complex, was consid-
ered. This version corresponds to a set of 30 reaction steps (listed in Table 13.3).
Stochastic simulations show how sustained oscillations occur in this model under
conditions corresponding to continuous darkness. As for the core model consid-
ered previously, the robustness of the oscillations is enhanced when the number of
protein and mRNA molecules increases.

A conspicuous property of the 10-variable deterministic PER-TIM model for cir-
cadian rhythms in Drosophila is that it can produce autonomous chaotic behavior
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Table 13.3. Nondeveloped stochastic version of the PER-TIM model for circadian rhythms

[Gonze et al. 2003].
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Table 13.3. Nondeveloped stochastic version of the PER-TIM model for circadian rhythms [Gonze et al.

2003].—contd

Reaction Number Reaction Step Probability of Reaction
19 c—k ¢, Wio = ky x C
20 vk Wao = ky X Cy
21 Mp—Ks War = ky X Mp
22 Pk, War = ky X Py
23 p—ki Was = ky X P,
24 Pk, Was = ky % Py
25 My —ke Was = ky X My
26 To—Ke s Was = ky X To
27 T,k Wy = kyx T,
28 T,k Was = kg X T
29 Cc—kuc Wi = ke X C
30 Cp—Ka Wao = kay % Cy

in a restricted domain in parameter space (see Section II.C). It was therefore inter-
esting to check whether stochastic simulations were capable of reproducing this
mode of dynamic behavior, which corresponds to the evolution to a strange attrac-
tor in the phase space. As shown in Figure 13.14, the strange attractor obtained by
numerical integration of the deterministic Equations 13.2 can be recovered in cor-
responding conditions by simulations of the non-developed version of the
stochastic model of Table 13.3. Here again, as illustrated in Figure 13.14, the
larger the number of molecules of MRNAs and proteins involved in the oscillatory
mechanism the closer the noisy stochastic trajectory is from the deterministic
chaotic attractor.

The results obtained with stochastic models help to clarify the limits of validity
of deterministic models for circadian oscillations. It appears that the deterministic
approach provides a faithful picture as long as the number of molecules involved
in the oscillatory mechanism exceeds a few tens or hundreds of molecules. Above
this range, the larger the number of molecules the closer the stochastic trajectory
from that predicted by the deterministic model.
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Figure 13.14. Effect of molecular noise on autonomous chaos. (a) Strange attractor corresponding to
chaotic oscillations in the deterministic PER-TIM model for circadian rhythms. (b and c) Progressive
dissolution of the strange attractor in the presence of molecular noise, for 2= 1,000 and 100,
respectively. The curve in a is obtained by numerical integration of Equations 13.2. In b and ¢, the
curves are obtained by means of the Gillespie algorithm applied to the non-developed stochastic version
of the PER-TIM model listed in Table 13.3 (Gonze et al. 2003).

IV. MODELING THE MAMMALIAN CIRCADIAN CLOCK

The molecular mechanism of circadian rhythms in mammals resembles that brought
to light for Drosophila. In this organism, the negative feedback exerted by the PER-
TIM complex is of an indirect rather than direct nature (Glossop et al. 1999). Thus,
the transcription of the per and tim genes is triggered by a complex formed by the
activators CYC and CLOCK. Binding of the PER-TIM complex to CYC and CLOCK
prevents the activation of per and tim expression (Lee et al. 1999). In mammals the
situation resembles that observed in Drosophila, but it is the CRY protein that forms
aregulatory complex with a PER protein (Shearman et al. 2000; Reppert and Weaver
2002). Several forms of these proteins exist (PER1, PER2, PER3, CRY1, and CRY2).
The complex CLOCK—BMALT1, formed by the products of the Clock and Bmal1
genes, activates Per and Cry transcription. As in Drosophila, the PER-CRY complex
inhibits the expression of the Per and Cry genes in an indirect manner, by binding
to the complex CLOCK—BMALT (Lee et al. 2001; Reppert and Weaver 2002).

The mechanism of circadian rhythms in Drosophila and mammals thus relies on
interlocked negative and positive feedback loops. In addition to the negative reg-
ulation of gene expression described previously, indirect positive regulation is
involved. In Drosophila, the PER-TIM complex de-represses the transcription of
Clock by binding to CLOCK, which exerts a negative autoregulation on the expres-
sion of its gene (Bae et al. 1998) via the product of the vri gene (Blau and Young
1999). In mammals, likewise, BmalT expression is subjected to negative autoregu-
lation by BMALT1, via the product of the Rev-Erbor gene (Preitner et al. 2002). The
PER-CRY complex enhances Bmall expression in an indirect manner (Reppert
and Weaver 2002) by binding to CLOCK—BMAL1 and thereby decreasing the
transcription of the Rev-Erbo; gene (Preitner et al. 2002).
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Models based on intertwined positive and negative regulatory loops have been
proposed for Drosophila (Smolen et al. 2001; Ueda et al. 2001) and mammals
(Forger and Peskin 2003, 2005; Leloup and Goldbeter 2003, 2004; Becker-Weimann
et al. 2004). We shall focus here on the model proposed for the mammalian circa-
dian clock, as it allows us to address the molecular dynamical bases of disorders of
the human sleep/wake cycle associated with dysfunctions of the circadian clock.

A. Toward a detailed computational model for the mammalian circadian clock

The model for the mammalian circadian clock is schematized in Figure 13.15, both
in a compact (a) and in a detailed manner (b). It describes the regulatory interac-
tions between the products of the Per, Cry, Bmall, and Clock genes. For simplic-
ity, we do not distinguish between the Per1, Per2, and Per3 genes and represent
them in the model by a single Per gene. Similarly, Cry1 and Cry2 are represented
by a single Cry gene. Moreover, as the Clock mRNA and its product (the CLOCK
protein) are constitutively high in comparison to Bmall mRNA and BMALT protein,
they are considered in the model as parameters rather than variables.

We shall treat the regulatory effect of BMALT on Bmall expression as a direct
negative autoregulation. We have shown (Leloup and Goldbeter 2003) that similar
conclusions are reached in an extended model in which the action of the REV-ERBa.
protein in the indirect negative feedback exerted by BMALT on the expression of
its gene is considered explicitly. The version of the model without REV-ERBa. is gov-
erned by a set of 16 kinetic equations (Leloup and Goldbeter 2003, 2004), whereas
three more equations are needed in the extended model that incorporates the
Rev-Erboe mMRNA and the Rev-Erba protein (Leloup and Goldbeter 2003).

In a certain range of parameter values, the 16- or 19-variable model for the mam-
malian clock produces sustained oscillations with a circadian period. These oscilla-
tions are endogenous, in that they occur for parameter values that remain constant
in time, in agreement with the observation that circadian rhythms persist in con-
tinuous darkness or light. As observed experimentally (Lee et al. 2001; Reppert and
Weaver 2002), Bmal1T mRNA oscillates in antiphase with Per and Cry mRNAs (Figure
13.16a). The proteins also undergo antiphase oscillations and follow their mRNAs
by a few hours (Figure 13.16b). Because most parameter values remain to be deter-
mined experimentally—as for the case of Drosophila (see Figures 13.2 and 13.3)—
these oscillations were obtained for a semi-arbitrary choice of parameter values in
a physiological range so as to yield a period of oscillations in continuous darkness
(DD) close to 24 h.

To probe for entrainment of the circadian clock by LD cycles, we must incorpo-
rate the effect of light on Per expression. In continuous darkness, the maximum
rate of Per expression, v, remains at a low constant value. In LD, this rate varies
periodically (e.g., as a square wave, going from a constant low value during the
dark phase up to a higher constant value v« during the light phase). In such
conditions, entrainment by a 12:12 LD cycle (12 h of light followed by 12 h of
darkness) can be obtained over an appropriate range of v, values (Leloup and

Goldbeter 2003).
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Figure 13.15. Model for the mammalian circadian clock involving interlocked negative and positive
regulations of the Per, Cry, and Bmal1 genes by their protein products. (a) Synthetic scheme of the
model with the positive limb involving BMAL1-CLOCK and the negative limb involving PER-CRY. (b)
Developed model for the mammalian clock (Leloup and Goldbeter 2003). The effect of light is to
increase the rate of expression of the Per gene.

Interestingly, the phase of oscillations entrained in LD is particularly sensitive to
changes in parameters that control the level of CRY protein and Cry mRNA. This
was shown for parameter Ky (the equilibrium constant describing the activating
effect of CLOCK—BMAL1 on Cry expression) and for parameter v,,c, which meas-
ures the maximum rate of degradation of Cry mRNA. An example of the latter
situation is illustrated in Figure 13.16d, where the only difference with respect to
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Figure 13.16. Circadian oscillations predicted by the mammalian clock model. (a) In constant darkness,
the mRNA of BmalT oscillates in antiphase with respect to the mRNAs of Per and Cry. (b)
Corresponding protein oscillations in constant darkness. (c) Oscillations of the mRNAs after entrainment
by 24-h light/dark (LD) cycles. The peak in Per mRNA occurs in the middle of the light phase. (d)
Oscillations are delayed by 9 h and the peak in Per mRNA occurs in the dark phase when the value of
parameter Kac is decreased from 0.6 to 0.4 nM. Other parameter values correspond to the basal set of
values listed in Table 1 in Leloup and Goldbeter (2003). In ¢ and d, the maximum value of the rate

of Per expression, v, varies in a square-wave manner so that it remains at a constant low value of 1.5
nM/h during the 12-h-dark phase (black rectangle), and is raised up to the high value of 1.8 nM/h during
the 12-h-light phase (white rectangle). The curves have been obtained by numerical integration of
Equations 1 through 16 of the model without REV-ERBa. (listed, together with parameter values, by
Leloup and Goldbeter (2003)).

Figure 13.16¢c is a 10% change in parameter vy,c. The autonomous period in DD is
23.85h and 23.70 h in Figures 13.16c and 13.16d, respectively, whereas the phase
of Per mRNA is delayed by about 9 h in the latter case—so that Per mRNA reaches
its maximum during the D phase instead of peaking in the L phase. This result is
counterintuitive, in that we expect the maximum in Per mRNA to occur in phase L,
because Per expression is enhanced by light. The virtue of the computational
model is to alert us to the possibility that the phase of oscillations in LD may be
highly labile, with the peak in Per mRNA shifting well into the D phase as a result
of a small change in a light-insensitive parameter.

B. Multiple sources for oscillations in the circadian regulatory network

The genetic regulatory network underlying circadian rhythms contains intertwined
positive and negative feedback loops. In view of the complexity of these regula-
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Figure 13.17. Multiple sources of oscillatory behavior in the genetic regulatory network controlling
circadian rhythms. (a) Oscillations shown in Figures 13.16a and 13.16b disappear in the absence of PER
protein synthesis (kp = 0). The curves show the asymptotic stable steady state reached after transients
have subsided. (b) Sustained oscillations can nevertheless be restored when choosing a slightly different
set of parameter values, even though k., = O (Leloup and Goldbeter 2003). The fact that oscillations can
occur in the absence of PER protein indicates the existence of another oscillatory mechanism, which
relies only on CLOCK-BMALT negative auto-regulation (see scheme in Figure 13.15a).

tory interactions, it should not be a surprise that more than one mechanism in the
network may give rise to sustained oscillations. Evidence pointing to the existence
of a second oscillatory mechanism (Leloup and Goldbeter 2003, 2004) stems from
the fact that sustained oscillations generally disappear in the absence of PER
protein (Figure 13.17a). However, even in such conditions sustained oscillations may
occur with a period that is not necessarily circadian (Figure 13.17b). This second
oscillator is based on the negative autoregulation exerted by BMALT on the expres-
sion of its gene, via the Rev-Erba gene (see Figure 13.15).

Experimental observations so far suggest that if a second oscillator exists in the
circadian regulatory network it does not manifest itself in producing rhythmic
behavior. Thus, mPer1/mPer2 (Zheng et al. 2001) or mCry1/mCry2 (Van der Horst
et al. 1999) double-knockout mice are arrhythmic. In some conditions, however, an
extended light pulse can restore rhythmic behavior in a low proportion of
mPer1/mPer2 double-knockout mice (K. Bae and D. Weaver, personal
communication).

In the absence of the negative feedback exerted by BMAL1 on the expression
of its gene, oscillations can still originate from the PER—CRY negative feedback
loop involving BMALT. This result holds with the observation that circadian oscilla-
tions occur in the absence of REV-ERBa. in mice (Preitner et al. 2002). Preventing
altogether the synthesis of BMAL1 suppresses oscillations, because BMAL1 is
involved in the mechanism of the two oscillators described previously.

C. Sensitivity analysis of the computational model for circadian rhythms

To assess the sensitivity of circadian oscillatory behavior to changes in parameter
values, we determined for each parameter (one at a time) the range of values pro-
ducing sustained oscillations (as well as the variation of the period over this range)
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while keeping the other parameters set to their basal values (Leloup and Goldbeter,
2004; for an alternative sensitivity analysis, see Stelling et al. 2004). Such a sensitiv-
ity analysis was performed by constructing a series of bifurcation diagrams for four
different sets of basal parameter values, each yielding circadian oscillations. Para-
meter set 1 was chosen so that oscillations disappear in the absence of PER protein
or in the absence of negative autoregulation by BMAL1. Parameter set 2 corre-
sponds to a situation in which oscillations can occur in the absence of PER, as a
result of the negative autoregulation of BMALT. Parameter set 3 corresponds to a
situation in which circadian oscillations can occur in the absence of negative
autoregulation by BMALT1. Finally, parameter set 4 was selected because oscilla-
tions can occur in the absence of PER or in the absence of negative autoregulation
of BMALT. On the basis of this analysis we may distinguish between two types of
sensitivity: the first relates to the size of the oscillatory domain and the other to the
influence on the period.

For some parameters the range of values producing sustained oscillations is quite
narrow, less than one order of magnitude, whereas for other parameters it is much
larger and extends over several orders of magnitude. The largest variation in
period, by a factor close to 3, is observed for parameters that measure, respec-
tively, the entry of the PER-CRY complex into the nucleus, and the formation of the
inactive complex between PER-CRY and CLOCK-BMAL1 in the nucleus. For some
sets of parameter values, the period may vary significantly (by a factor close to 2)
over the oscillatory domain, whereas for other sets of parameter values the change
in period as a function of this parameter may be reduced. Parameters for which the
range of values yielding oscillations is narrowest are mainly those linked to BMALT
and its mMRNA. On the basis of these results, we may conclude that parameters
affecting the level of BMALT possess the narrowest range of values producing sus-
tained oscillations, whereas the period is most affected by the parameters meas-
uring the entry of the PER-CRY complex into the nucleus and the formation of the
inactive complex between PER-CRY and CLOCK-BMAL1.

D. From molecular mechanism to physiological disorders

The computational model for circadian oscillations in mammals provides us with
the unique opportunity to address not only the molecular mechanism of a key bio-
logical rhythm but the dynamical bases of physiological disorders resulting from
perturbations of the human circadian clock. Several disorders of the sleep/wake
cycle are indeed associated with dysfunctions of the circadian clock in humans. In
the familial advanced sleep/phase syndrome (FASPS), the phase of the sleep/wake
cycle in LD is advanced by several hours, as a result of a decreased rate of PER
phosphorylation (Toh et al. 2001). In a family in which FASPS is present over five
generations, those affected by the syndrome tend to go to sleep around 7:30 p.m.
and awake around 4:30 a.m. Moreover, in a patient affected by FASPS the period
of the circadian clock in DD was reduced down to 23.5 h from a normal mean value
of 24.4 h (Jones et al. 1999).
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Figure 13.18. Relating the mammalian clock model to syndromes associated with disorders of the
sleep/wake cycle in humans (Leloup and Goldbeter 2003). (a) Effect of the maximum rate of PER
phosphorylation on the free running period in DD and on the phase of the oscillations in LD. The phase
corresponds to the time (in h) at which the maximum in Per mRNA occurs after the onset of the L
phase. Decreasing (increasing) the rate of phosphorylation of the PER protein, V0, wWith respect to the
“normal” situation can produce a phase advance (delay) as well as a decrease (increase) in free running
period that accounts for the phase shift observed in the familial advanced sleep phase syndrome (FASPS)
or the delayed sleep phase syndrome (DSPS). (b) Situations 1 and 2 show that different values of the
control parameter can produce different phases after entrainment, even though they correspond to the
same free running period in DD. The gray areas on the left and right in the two panels refer to absence
of entrainment (see Figure 13.19).

The phase advance characteristic of FASPS can be accounted for by the model
as a result of a decrease in parameter V.., which measures the maximum rate of
PER phosphorylation by the protein kinase CK1e. As in clinical observations (Jones
et al. 1999), the advance of the phase in LD then accompanies a decrease in
autonomous period as the phosphorylation rate decreases (Leloup and Goldbeter
2003). Such a decrease in period in DD can be observed over parts of the bifurca-
tion diagram established as a function of V... (see Figure 13.18a). The model could
be used similarly to address the delayed sleep phase syndrome, which is the mirror
physiological disorder of the sleep/wake cycle and appears to be associated with
increased rate of PER phosphorylation (Ebisawa et al. 2001; Archer et al. 2003). The
bifurcation diagram of Figure 13.18a indicates that an increase in V. may corre-
spond to a delayed phase of the sleep/wake cycle in LD, and to an increase in the
autonomous period of circadian oscillations in DD. An interesting prediction arising
from Figure 13.18b is that two distinct values of V., may yield the same period in
DD and different phases upon entrainment in LD.

For a long time the model for the mammalian circadian clock placed us in a
quandary, as the model failed to account for the most conspicuous property of cir-
cadian rhythms; namely, their entrainment by LD cycles. There is generally a range
of parameter values in which entrainment occurs, but we failed to find any such
range when the light-sensitive parameter (the maximum rate of Per expression) was
made to vary in a square wave manner. Regardless of the magnitude of the peri-
odic variation, entrainment did not occur. We then realized that the level of CRY

Computational Systems Biology, A Kriete & R Eils Eds., Elsevier AP 2006.

.



P088786-Ch013.gxd 9/12/05 5:51 PM Page 284 $

284 Computational Models for Circadian Rhythms: Deterministic
Versus Stochastic Approaches

protein was critical for entrainment by LD cycles. When the level of CRY remains
too low, free PER builds up during successive light phases, as there is not enough
CRY with which to form a complex. Consequently, entrainment fails to occur (Leloup
and Goldbeter 2003). It was sufficient to raise the level of CRY—by increasing the
rate of PER synthesis or the rate of Per expression, or by decreasing the rate of
degradation of either PER or Per mRNA—for entrainment to occur.

If entrainment failure is so easy to obtain in the model, could it be that a corre-
sponding syndrome exists in human physiology? The answer is yes: there is a con-
dition known as non-24-h sleep/wake syndrome (Richardson and Malin 1996), in
which the time at which the subject goes to sleep is drifting every day. This slow
drift is sometimes accompanied by “jumps” in the phase ¢ of the sleep/wake cycle
in LD conditions. During such jumps, ¢ rapidly traverses one phase of the LD cycle
in a few days, and slowly drifts across the other phase of the LD cycle during a much
longer time (on the order of several weeks). The absence of entrainment in the
model corresponds to quasi-periodic oscillations in LD. These oscillations can be
associated or not with phase jumps, as shown in Figure 13.19 in panels A and B,
respectively. Chaotic oscillations may also result from the periodic forcing by LD
cycles (Figure 13.19¢).

We are currently using the model to search for conditions other than decreased
levels of CRY, which might also lead to the failure of entrainment in LD. If the non-
24-h sleep/wake cycle syndrome is indeed due to altered levels of CRY, the results
suggest that restoring adequate levels of the protein might allow entrainment to
occur.

V. CONCLUSIONS

Remarkable advances have been made during the last two decades in unraveling
the molecular bases of circadian rhythms—first in Drosophila and Neurospora, and
more recently in cyanobacteria, plants, and mammals. Based on experimentally
determined mechanisms, computational models of increasing complexity have
been proposed for these rhythms. As reviewed in this chapter, computational
approaches throw light on the precise conditions in which circadian oscillations
occur as a result of genetic regulation. The models also account for a variety of

>

Figure 13.19. Absence of entrainment and the non-24-h sleep/wake cycle syndrome. The phase of the
circadian oscillations does not always lock to a constant value with respect to the 24-h LD cycle, in
contrast to what occurs in the case of entrainment. Lack of entrainment can lead to quasi-periodic
behavior (a), which is sometimes accompanied by phase jumps (b) corresponding to slow drifts of the
phase followed by rapid progression through the L or D phase (horizontal arrows). Chaotic behavior (c)
can also be observed as a result of forcing by the LD cycle. Gray and white columns represent the D
and L phases of the LD cycles, respectively. Parameter values are as in Table 1 of Leloup and Goldbeter
(2003), with vp = 0.95 nMh™ (a), 1.45 nMh™" (b), or 0.70 nMh™" (c).
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properties of circadian rhythms, such as phase shifting or long-term suppression by
light pulses, entrainment by light/dark cycles, and temperature compensation.

When the numbers of molecules of protein or mRNA involved in the oscillatory
mechanism are very low, it becomes necessary to resort to stochastic approaches.
We have shown by means of stochastic simulations that coherent sustained oscil-
lations emerge from molecular noise in the genetic regulatory network as soon as
the maximum numbers of mMRNA and clock protein molecules are in the tens and
hundreds, respectively. At higher numbers of molecules, the stochastic models yield
results that are largely similar to the predictions of the corresponding determinis-
tic models. The latter therefore provide a useful representation of circadian oscil-
latory behavior over a wide range of conditions.

Among the factors that contribute to the robustness of circadian rhythms with
respect to molecular noise are the degree of cooperativity of repression, the dis-
tance from a bifurcation point, and the rate constants measuring the binding of the
repressor to the gene. All models considered here pertain to the onset of circadian
rhythms at the cellular level. The intercellular coupling of oscillatory cells—for
example, in the suprachiasmatic nuclei (SCN), which represent the central circadian
pacemaker in mammals (Kunz and Achermann 2003; Gonze et al. 2005)—may
further contribute to the robustness of circadian rhythms.

The computational approach supports the view (Reppert and Weaver 2002) that
the genetic regulatory mechanism of sustained circadian oscillations is similar in
both the central and peripheral (Schibler et al. 2003; Yoo et al. 2004) oscillators, and
that the observed differences in phase are of a quantitative rather than qualitative
nature.

We have used the case of circadian rhythms to show how more and more
complex computational models must be considered to accommodate the acceler-
ating flux of new experimental observations. A question that arises naturally is
whether such an ever-increasing complexity of the models is really needed. It
appears that as with geographical maps a balance must be made between the
necessity of including the most relevant details and the desire to not become lost
in a too meticulous description, because the model might quickly become so
complex that its detailed numerical study would become highly cumbersome.

An example of molecular detail that has to be incorporated is the phosphoryla-
tion of the PER protein: even if sustained oscillations are possible, in principle, in
the absence of PER covalent modification the phosphorylation step is needed not
only to account for the effect of mutations in the protein kinase that phosphory-
lates PER but also to account for some disorders of the sleep/wake cycle in humans
related to altered PER phosphorylation. Moreover, as described in this chapter,
several results can only be obtained in models that possess a minimum degree of
complexity. Thus, autonomous chaos was obtained in the 10-variable model for cir-
cadian rhythms in Drosophila incorporating the formation of a PER-TIM complex,
but not in the five-variable model based on PER alone. In the mammalian clock
model, incorporation of additional feedback loops brought to light the possibility
of multiple sources of oscillatory behavior.
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Finally, circadian rhythms provide a case in point for showing how computational
models can be used to address a wide range of issues, extending from molecular
mechanism to physiological disorders. Identifying the origin of dysfunctions and
predicting ways of obviating them in metabolic or genetic regulatory networks on
the basis of numerical simulations presents a key challenge for computational
biology.
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