
1. Introduction

Obesity has reached the proportions of a global epidem-
ic that needs to be addressed in its physiological and psy-
chological aspects (Fairburn and Brownell 2002; Wadden et
al 2002). Overweight is associated with increased risk of
developing a number of diseases (Must et al 1999). When
seeking to control overweight dieting is the most common-
ly used approach. In the US, where the prevalence of over-
weight continues to increase (Kuczmarski et al 1994;
Mokdad et al 1999), as many as 25% of men and nearly
50% of women in 1985 reported trying to lose weight.
Dieting, however, is often accompanied by repeated bouts
of weight loss and regain, a phenomenon known as weight
cycling (Blackburn et al 1989; Brownell 1989; Brownell
and Rodin 1994). Among those on diet, most initially lose
weight but will eventually regain it and, often, will even
exceed their original weight after failing to sustain their
efforts to control dietary intake. This pattern of alternat-
ing phases of dieting and relapse is also known as “yo-yo
dieting”.

Weight cycling is a process of clinical importance, since
a number of studies in humans and rodents suggest that
increased risks of morbidity (notably, cardiovascular dis-
ease) and mortality may be associated with fluctuations in
body weight (Ernsberger et al 1996; Jeffery 1996). The clin-
ical implications of the phenomenon were assessed by a
Task Force assembled by the NIH (National Task Force on
the Prevention and Treatment of Obesity 1994). 

Mathematical modelling has been used for long to clari-
fy the conditions in which oscillations occur in biological
systems (Goldbeter 1996, 2002). The purpose of this paper
is to explore the mechanism of weight cycling by means of
a theoretical model and to relate the phenomenon to other
rhythmic processes in biology. 

2. The PQR model for weight cycling

The PQR model for weight cycling, named after its three
variables, is based on a feedback of psychological nature,
by which the subject decides to reduce dietary intake once a
certain weight is exceeded. The three variables considered
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(see figure 1) are body weight (P), dietary intake (Q), and
the degree of resolution measuring cognitive restraint (R) by
which the subject decides to reduce the amount of dietary
intake Q once weight P becomes too large. Both Q and R are
normalized to vary between 0 and 1. Weight P and dietary
intake Q are expressed as amounts in excess of a basal, ref-
erence value. The healthy weight (Garn 1996; Meisler and
St Jeor 1996) reached around the age of 21 when growth
is completed corresponds to a certain value P > 0 that is
specific to each individual. Built into the model equations
are threshold functions for the dependence of R on P, and of
Q on R, which reflect the fact that the decision to lose
weight by reducing dietary intake is generally of a sudden,

all-or-none nature. Thus, the degree of cognitive restraint R
increases abruptly once weight P passes a threshold value,
whereas dietary intake Q undergoes a sharp decrease once R
exceeds a threshold level. Such thresholds, naturally associ-
ated with time delays, prove to be crucial for the occurrence
of sustained oscillations. 

2.1 Evolution equations

The time evolution of the three variables is governed by the
following differential equations:

The first equation indicates that the increase in weight P
above the reference value is linked to the excess dietary
intake Q, with a proportionality constant a measuring meta-
bolic efficiency, and that P decreases, owing to metabolic
energy dissipation, at a rate characterized by a function of
the Michaelis-Menten type encountered in enzyme kinetics
where the reaction rate initially rises with the level of sub-
strate and reaches a maximum value when the substrate
level becomes large. Here the dissipation rate reaches a
maximum value, b, when excess weight P is much larger
than constant K, which measures the value of P yielding
half-maximum rate. Similar results are obtained when the
sink for P is of a linear form (–bP). 

The second and third equations express the way dietary
intake and the degree of cognitive restraint are controlled and
vary in the course of time. Each of these equations contains a
positive and a negative term measuring, respectively, the rate
at which Q or R increases or decreases. Thus eqs (1b) and (1c)
indicate that both Q and R vary in a reciprocal manner
between two reservoirs, the constant sum of which remains
equal to unity. Equation (1b) indicates that Q tends to increase
at a maximum rate V1 multiplied by a Michaelian function in
which the quantity (1-Q) plays the role of substrate: the small-
er Q – i.e. the stronger the restriction –, the stronger the ‘crav-
ing’ to increase dietary intake. The tendency to increase food
intake diminishes as Q tends to its maximum value equal to
unity. At the same time Q tends to decrease at a maximum rate
V2R proportional to cognitive restraint, multiplied by a
Michaelian function in which Q plays the role of substrate. 

The structure of eq. (1b) reflects the existence of oppos-
ing factors acting on the quantity of nutritional intake. These
factors mediate the neurohormonal control of appetite
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Figure 1. PQR model for weight cycling. Weight P (in excess of
a basal reference value) increases with dietary intake Q at a rate
aQ, and decreases due to energy dissipation at a rate that saturates
at a maximum value b. An increase in weight P causes the degree
of resolution to lose weight, or cognitive restraint (R) to increase
at a maximum rate V3P. Habituation causes R to wane at a maxi-
mum rate V4. Dietary intake tends to increase at a maximum
rate V1 and to decrease at a maximum rate V2R. Dashed arrows
indicate the regulations exerted by P on R and by R on Q, respec-
tively. The phenomenological eqs (1b) and (1c) ensure that at
steady state R and Q exhibit a threshold dependence on P and R,
respectively (see figure 2). In an appropriate range of parameter
values the PQR model gives rise to sustained oscillations of the
limit cycle type corresponding to weight cycling.
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(Wynne et al 2005). Thus, a variety of neuropeptides synthe-
sized in the gut regulate food intake. The first term in eq. (1b)
reflects the orexigenic influence of one of these neuropep-
tides, ghrelin, which enhances appetite and increases food
intake in humans (Wren et al 2001). The second term in
eq. (1b) –besides reflecting negative regulation by cognitive
restraint R– expresses the effect of other gastrointestinal pep-
tides such as cholecystokinin and glucagon-like peptide-1,
which promote satiety and reduce food intake in humans
(Flint et al 1998; Woods 2004). On a longer time scale,
insulin and leptin, secreted respectively by the pancreas and
by adipocytes, act as anorexigenic signals and decrease food
intake. Ghrelin may also be a long-term regulator of energy
intake since plasma ghrelin levels are correlated with body
mass (Wynne et al 2005). The action of all these peripheral
signals is integrated at the level of the hypothalamus, prima-
rily in the arcuate nucleus where neuronal circuits using
specific neuropeptides act to stimulate or reduce food intake
(Schwarz et al 2000; Wynne et al 2005). 

The structure of eq. (1b) therefore takes into account the
opposing influences of orexigenic and anorexigenic signals
involved in the neuro-hormonal control of appetite, as well
as the role of cognitive restraint R, which tends to decrease
food intake. Cognitive restraint is the psychological variable
responsible for weight cycling. In the absence of coupling to
cognitive restraint, P and Q would settle to a stable steady
state for a given set of parameter values.

The choice of Michaelian functions for the two terms in
eq. (1b) is largely phenomenological, and expresses in a sim-
plified, compact form the complexity of neurohormonal con-
trol of food intake. The choice of this formalism can be justi-
fied as follows. First, as is often the case in biochemistry and
physiology, these functions are saturable, i.e. they increase
from zero up to a plateau corresponding to a maximum value,
and therefore cannot grow in an explosive manner. Thus, the
rate of decrease in Q triggered by anorexigenic signals rises
with Q up to a maximum value, while the rate of increase in
Q triggered by orexigenic signals diminishes from a plateau
and goes to zero as Q increases from zero up to its maximum
value. Second, a key property of eq. (1b) is that it naturally
produces a threshold in the dependence of Q on R at steady
state (see below, figure 2B). This result is based on prior work
on biochemical systems controlled by protein covalent mod-
ification, where thresholds originate from similar equations
involving two antagonistic enzyme reactions which obey
Michaelis-Menten, saturable kinetics (see below).

The structure of eq. (1c) is similar to that of eq. (1b). It
indicates that the degree of resolution R increases in a
Michaelian manner with (1-R), at a maximum rate V3P pro-
portional to weight, while R decreases at a maximum rate V4
multiplied by a Michaelian function in which R plays the
role of substrate. The latter term reflects a loss of cognitive
restraint in the course of time due to a process of habituation,
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Figure 2. Threshold dependence of R on P and of Q on R. In
(A), the degree of cognitive restraint R is shown to rise abruptly
when weight P exceeds the threshold value P*. Conversely, R
decreases sharply when P drops below P*. In (B) dietary intake
Q drops abruptly when R exceeds the threshold R*, and increases
when R passes below this value. The curves are generated by
determining the steady states of R as a function of P and of
Q as a function of R through numerical integration of eqs (1c)
and (1b), respectively. The thresholds predicted by eqs (2a,b)
correspond to the values P*=0.418 and R*=0.667. Parameter
values are (per unit time): a=b=0.1, V1=1, V2=1.5, V3=6,
V4=2.5; moreover, K=0.2 (per unit weight), and Ki=0.01 (i=1,...4).
Both R and Q are expressed as fractions varying between
zero and unity. One unit of excess weight P corresponds, typical-
ly, to 25 and 75 kg for cases of mild and severe overweight,
respectively.



which is analogous to the desensitization encountered at the
cellular level in the response to hormonal or sensory stimuli.

In the above equations, parameters a and b thus have a
metabolic meaning as they measure how weight P increas-
es with food intake Q or decreases autonomously due to
energy dissipation. Parameters V1 and V2 respectively
measure the tendency of Q to increase with orexigenic sig-
nals or to decrease with anorexigenic signals and with cog-
nitive restraint R, while V3 and V4 have a psychological
nature and measure the rate at which R increases with P or
wanes in the course of time.

2.2 Threshold values of P and R

The point important for weight cycling is that the phenome-
nological eqs (1b) and (1c) can generate sharp thresholds in
the steady-state dependence of R on P and of Q on R. The
existence of sharp thresholds in equations of this sort has
been extensively studied in the context of regulation of pro-
tein activity by reversible modification, e.g. phosphorylation-
dephosphorylation, as a result of “zero-order ultrasensitivity”
(Goldbeter and Koshland 1981). Equations very similar to
eqs (1a)-(1c) involving thresholds have been used for model-
ling the biochemical clock that drives the early cell division
cycles in amphibian embryos (Goldbeter 1991, 1996). 

Provided that the constants Ki (i=1,...4) are much small-
er than unity, eqs (1b) and (1c) ensure that R will undergo
an abrupt increase as soon as P exceeds a threshold value P*
(figure 2A) and that Q will drop sharply when R passes a
threshold value R* (figure 2B). The threshold values P* and
R* are given by the following analytical expressions (see
Goldbeter and Koshland 1981) as a function of the maxi-
mum rates Vi and threshold constants Ki (i=1,...4):

For the parameter values considered in figure 2, P*=0.418
and R*=0.667 (R is a dimensionless quantity, while P is
expressed in units which vary depending on whether the
model applies to moderately or severely overweight per-
sons; see below).

3. Dynamics of weight cycling

3.1 Sustained oscillations

The analysis of the model indicates that depending on
parameter values, the system governed by eqs (1a-c) can

either evolve towards a stable steady state or undergoes sus-
tained oscillations around an unstable steady state. Eq. (1a)
indicates, however, that a steady state only exists if energy
dissipation is sufficiently large at a given metabolic effi-
ciency, i.e. b > aQ. Given that Q varies between 0 and 1, this
condition is satisfied when b ≥ a. In the contrary case, when
energy dissipation is not large enough, no steady state is
reached and weight P will increase monotonously in the
course of time.

A typical example of sustained oscillations produced by
the model is shown in figure 3A. Oscillations in excess
weight P are accompanied by periodic variations in both the
degree of cognitive restraint R and excess dietary intake Q.
The period of the oscillations in figure 3A is of the order of
ten time units. A reasonable estimate would be obtained if
time were expressed, for example, in units of 2 weeks to 1
month, which would correspond to a weight cycle of the
order of half a year to one year (Wadden et al 1996). As to
the magnitude of the changes in weight, cycles generally
correspond to a loss (followed by a gain) of some 5 or 15 kg
in moderately or more severely overweight persons
(Wadden et al 1996). To account for such changes, excess
weight P in figure 3A should be expressed in units of 25 kg
and 75 kg, respectively. These estimates set the time and
weight units in which parameter values listed in the legends
to figures 2 and 3 should be expressed to match the magni-
tude and time course of weight cycling.

Sustained oscillations generated by the PQR model cor-
respond to the evolution toward a closed curve in the phase
plane formed when one of the three variables, e.g. P, is plot-
ted as a function of either Q or R (figure 3B). This closed
curve is known as a limit cycle since it can be reached from
inside or outside, regardless of initial conditions, as shown
in figure 3B. The time taken to travel once along the cycle
corresponds to the period of oscillations. Limit cycle oscil-
lations are particularly stable as they are characterized by a
unique period and amplitude for a given set of parameter
values. Most biological rhythms represent sustained oscilla-
tions of the limit cycle type (Goldbeter 1996, 2002).

3.2 Mechanism of oscillations

The mechanism underlying weight cycling in figure 3A can
best be followed by turning to the steady-state curves of
figure 2. Let us start at a value of P smaller than the thresh-
old P*. Because P is relatively small, the degree of restraint
R is also reduced and less than R*. As the value of Q is large
because Q is assumed to decrease due to cognitive restraint
only when R > R*, P will slowly increase in the course of
time. Consequently P moves to the right on the curve of
figure 2A, until it passes the threshold value P*. This leads
to an abrupt rise in the degree of restraint R : the passage
beyond the critical weight P* triggers in the subject the
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decision to reduce dietary intake. The increase in R beyond
the threshold R* causes Q to drop sharply, as shown by the
curve in figure 2B. As a result of this drop in dietary intake,
after a lag P will begin to decrease. Eventually, in conjunc-
tion with habituation, the passage of P below the threshold

P* in figure 2A triggers a decline in the degree of restraint
R. When R drops below the threshold R* in figure 2B, again
after a lag Q will start to increase. This relapse will cause P
to resume its rise: a new round of weight cycling begins.

3.3 Parameter range yielding oscillations

While the above explanation clarifies the dynamics of
weight cycling, it may convey the wrong impression that
oscillations necessarily occur once the feedback loop based
on cognitive restraint operates. A key insight from the
model, however, is that sustained oscillations only occur in
precise conditions, in a domain bounded by critical values of
each of the control parameters. This property is illustrated in
figure 4 as a function of parameter V4, which measures the
rate at which the cognitive restraint that controls the reduc-
tion of dietary intake wanes over time. This parameter large-
ly governs the tendency to relapse. The family of curves in
figure 4 shows the time evolution of excess weight for ten
values of V4 increasing from 0.1 to 10 by steps of 1.1.
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Figure 3. Sustained oscillations generated by the model for
weight cycling. (A) Time evolution of excess weight P (in blue),
degree R of cognitive restraint (in green), and fraction Q of
maximum dietary intake in excess of a basal value (in red).
(B) The oscillations correspond to the evolution towards a limit
cycle shown here in the (P, R) plane as a projection of the trajec-
tory followed by the 3-variable system governed by eqs (1a-c).
The same closed curve, known as a limit cycle, is reached from
two distinct initial conditions: P=0.43, Q=0.9, R=0.6 (green tra-
jectory), and P=0.43, Q=0.8, R=0.05 (blue trajectory, which
merges with the green one), corresponding to points located inside
and outside the limit cycle, respectively. To match typical dura-
tions of weight cycles, time in (A) should be expressed in units of
the order of one week to one month. The curves are obtained by
numerical integration of eqs (1a-c), using the Berkeley Madonna
program. Parameter values are as in figure 2.

Figure 4. Domain of occurrence of weight cycling as a function
of parameter V4, which measures the rate of waning of the resolu-
tion to reduce dietary intake by cognitive restraint. Shown is the
family of curves that represent the time evolution of excess weight
P for V4 increasing from 0.1 (lowest curve) to 10 (upper curve) by
9 steps of 1.1. For V4=0.1 (first curve from the bottom) a stable
steady state corresponding to a low value of P is reached. For V4
> 9.4, excess weight stabilizes at a relatively larger value. In the
interval between these two critical values of V4, sustained oscilla-
tions in P corresponding to weight cycling occur. Both the latency
(i.e. the time to the first peak in P) and the mean level of the oscil-
lations increase with parameter V4. The curves are obtained by
numerical integration of eqs (1a-c), using the parameter values of
figures 2 and 3. Initial conditions are P=0.25, Q=0.9, R=0.02.



For the parameter values considered in figure 4, sus-
tained oscillations are observed in the range 0.12 < V4
< 9.28. For V4 less than 0.12, P reaches a stable, low steady-
state value (lower curve). When V4 exceeds this critical
value, sustained oscillations occur. The latency (i.e. the time
to the first peak in P) and mean level of P during oscilla-
tions rise progressively as the value of V4 increases. At the
same time, the amplitude of the oscillations in P progres-
sively diminishes, until the system reaches a stable steady
state corresponding to a relatively large value of P when V4
exceeds the second critical value close to 9.3 (upper curve).
Sustained oscillations therefore occur in a range bounded by
two critical values of V4. These critical parameter values
correspond to a Hopf bifurcation, i.e. to the onset of limit
cycle oscillations when the steady state becomes unstable.

Equations (2a) and (2b) suggest that the ratios (V1/V2)
and (V3/V4) are of crucial importance for oscillations, rather
than the absolute values of the individual rates. Numerical
simulations confirm that sustained oscillations only occur
when each of these ratios lies within a range bounded by
two critical values. The domain in which weight cycling
occurs is shown in figure 5. Outside this closed domain,
weight P stabilizes at a stable steady state that tends to be
low as (V1/V2) decreases and (V3/V4) increases, or high in
the opposite case. The amplitude of weight cycling can be
very low near the boundary of the oscillatory domain, and
increases as the system enters the domain of oscillatory
behaviour in figure 5 (see figure 4).

4. Discussion

Biological rhythms occur over a wide range of periods in a
variety of systems including neural and cardiac rhythms,
oscillatory enzyme reactions, pulsatile hormone secretion,
and circadian rhythms. These oscillations originate from
feedback processes that control the expression of genes or
the activity of enzymes, receptors, or ion channels
(Goldbeter 1996, 2002). The present study indicates that the
phenomenon of weight cycling shares common properties
with oscillatory phenomena observed at the cellular level in
biological systems, even if the feedback process that drives
the oscillations is of a psychological rather than genetic,
biochemical or physico-chemical nature. 

In relating weight cycling to biological rhythms of the
limit cycle type, several caveats should be raised. The regu-
larity found for oscillations of this sort in biological systems
should not be expected for oscillations driven by a feedback
of psychological nature, since the latter does not obey strict
physico-chemical laws as do chemical or cellular systems.
Moreover, beyond their stochastic variation, some parame-
ters of the model are likely to change in the course of time;
this may affect quantitatively, and even qualitatively,
dynamic behaviour. Thus, after a first round of weight loss,

biochemical parameters may evolve in such a way that
regain will occur more readily, as a result of increased meta-
bolic efficiency (Brownell et al 1986). Such biochemical
changes could be reflected in the model by an increase in
parameter a, which measures the rate at which weight
increases with a given level of dietary intake. The rate of
attenuation of cognitive restraint, measured by V4, may also
rise during successive weight cycles. When a progressive
increase in a and V4 in the course of time is incorporated
into the model oscillations are still observed, but the mean
level of P around which they occur rises (see figure 4). The
upward drift in the oscillations corresponds to the clinical
observation that the peak weight observed during succes-
sive cycles often tends to increase. If the rise in the two
parameters is maintained, however, oscillations may even-
tually stop, and the weight will continue to increase monot-
onously. Incorporating changes in parameters such as a and
V4 may thus account for a progressive increase in weight
with age.

Body weight and appetite are controlled by an array of
peripheral signals which are integrated in the hypothalamus
to stimulate or limit food intake (Schwarz et al 2000;
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Figure 5. Domain of weight cycling as a function of (V1/V2) and
(V3/V4). Upon varying these parameter ratios, V2 and V4 are held
at their basal values of 1.5 and 2.5, respectively. The boundary of
the domain of sustained oscillations (weight cycling) was deter-
mined by numerical integration of eqs (1a-c), for the parameter
values of figures 2 and 3. Outside the domain of sustained oscilla-
tions, weight P stabilizes at a stable steady state. The steady-state
value of P tends to increase with (V1/V2), and to decrease when
(V3/V4) rises. The boundary of the oscillatory domain is the set of
Hopf bifurcation points corresponding to the onset of limit cycle
oscillations.



Wynne et al 2005). The model takes into account these
opposing regulatory influences as well as the effect of cog-
nitive restraint in setting the level of the nutritional variable
Q. Weight cycling originates in the model from the negative
feedback exerted by cognitive restraint on weight. The
question arises as to whether the model might also pertain
to a disorder such as anorexia, which involves severe nutri-
tional restraint associated with unknown changes in
endocrine and neural modulators of food intake. Although
such extension goes somewhat beyond the framework of
the present model we may note that because it is associated
with excessive restraint, anorexia should correspond in the
model to a situation in which P reaches a value well below
that corresponding to the healthy weight. In the stability
diagram drawn as a function of the ratios of parameters
(V1/V2) and (V3/V4), this region would be located well under
the oscillatory range, near the bottom, in the right corner in
figure 5.

In spite of its relative simplicity the PQR model provides
a theoretical framework for weight cycling, which suggests
ways to control the phenomenon. The view that weight
cycling represents limit cycle oscillations, possibly modu-
lated by a drift in parameter values, has indeed specific
implications. The analysis of the model indicates that sus-
tained oscillations only occur in a precise window bounded
by critical values of a particular control parameter. Outside
this range weight P reaches a stable steady state. The exis-
tence of a domain of oscillations bounded by critical values
of a control parameter was illustrated in figure 4 as a func-
tion of parameter V4, and in figure 5 as a function of the
ratios (V1/V2) and (V3/V4). Similar results on the existence
of critical values bounding a domain in which limit cycle
oscillations occur can be obtained as a function of other
parameters of the model such as V1, a or b. 

Thresholds play a key role in the mechanism of weight
cycling. Thus, the oscillations in figure 3A disappear and
the system settles at a stable steady state in which P is close
to the relatively large value of 0.44 when the thresholds in
the curves of figure 2 become less steep as parameters Ki
(i = 1,...4) rise above the value of 0.05 (see figure 6). This
result shows that weight cycling occurs only when the
thresholds in the dependence of R on P and of Q on R are
sufficiently sharp. Because oscillations require the passage
of P and R back and forth from below to above their respec-
tive thresholds, another way to stop oscillations is to prevent
the rise of P above the threshold P* (by acting on a or b –
the latter parameter measures energy dissipation and
increases with physical exercise), or to ensure that cognitive
restraint remains well above the threshold R* (by increasing
V3 or diminishing V4).

The requirement for threshold steepness and the exis-
tence of a critical range of parameter values in which
oscillations occur are predictions of the model. These

results are missed in a simple verbal model, such as one
that assumes that a subject diets until his/her weight falls
below a certain value P1 and resumes dieting when
weight exceeds a higher value P2. Rather than being based
on a discontinuous, ad hoc description that always predicts
oscillations of weight between two values imposed à priori,
weight cycling was shown here to arise only in precise
conditions, with an amplitude dependent on the parameters,
in a model described by a set of three continuous differen-
tial equations. 

According to the present model, weight cycling should
appear or disappear abruptly when a critical value of a con-
trol parameter is passed. The implications of these results
for the prevention of weight cycling lead to the concept of a
therapeutic path in parameter space. In dynamic terms, the
changes in parameter values associated with this path would
induce the transition of body weight from sustained oscilla-
tions around an unstable steady state to a stable steady state.
Maintaining weight under a critical value should bring
weight cycling to an end and allow body weight to stabilize
below the oscillatory range. This approach fits with the
view (Stunkard et al 1979; Foster et al 1996) that the major
issue in weight control is not so much one of losing weight
as one of preventing relapse by adopting long-term lifestyle
changes.
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Figure 6. Weight cycling requires sharp thresholds in the
dependence of R on P and of Q on R. Sustained oscillations
obtained for Ki=0.01 (i=1,…4) – which values produce the thresh-
olds shown in figure 2 – disappear when Ki=0.1 (blue curve).  For
this higher value of Ki the sigmoidal dependence of R on P and of
Q on R is not as steep as that shown in figure 2. The curves are
obtained for the parameter values of figures 2 and 3 by numerical
integration of eqs (1a-c), starting from the initial values: P=0.5,
Q=R=0.8.
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