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Abstract

Most living organisms have developed the capability of generating autonomously sustained
oscillations with a period close to 24 h. The mechanism responsible for these circadian rhythms
relies on the negative regulation exerted by a protein on the expression of its own gene. De-
terministic models for circadian rhythms account for the occurrence of autonomous oscillations
of the limit cycle type, for their entrainment by light–dark cycles, and for their phase shifting
by light pulses. Such models, however, do not take into consideration the molecular 5uctua-
tions which arise when the number of molecules involved in the regulatory mechanism is low.
Here we resort to a stochastic description of a core model for circadian rhythms to study the
emergence of coherent oscillations in gene expression in the presence of molecular noise. We
show that despite the “bar code” pattern of gene activation, robust circadian oscillations can be
observed. Simulations of the deterministic, fully developed version of the circadian model indi-
cate, however, that sustained oscillations only emerge above a critical value of the rate constants
characterizing the reversible binding of repressor to the gene, while below this value the system
evolves towards an excitable steady state. This explains why, depending on whether or not the
critical value of these rate constants is exceeded, stochastic simulations of the model produce
coherent oscillations or very noisy oscillations with a highly variable period.
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1. Introduction

To adapt physiological behavior to the natural alternation of day and night, most
living organisms have developed the capability of generating autonomously sustained
oscillations with a period close to 24 h. These circadian rhythms are endogenous
because they can occur in constant environmental conditions (e.g. constant darkness).
During the last decade experimental studies have shed much light on the molecu-
lar mechanism of circadian rhythms [1–3]. In all eukaryotic organisms, the molecular
mechanism of circadian oscillations relies on the negative feedback exerted by a clock
protein on the expression of its gene [1–4]. Based on these experimental observations,
mathematical models for circadian rhythms have been proposed [5–12]. Taking the
form of a system of coupled ordinary diEerential equations, these deterministic models
predict that, in a certain range of parameter values, the genetic regulatory network can
produce sustained oscillations of the limit cycle type.
One limitation of deterministic models is that they do not take into consideration

the fact that the number of molecules involved in the regulatory mechanism within
the rhythm-producing cells may be low. At low concentrations of protein or messenger
RNA molecules, molecular 5uctuations are likely to have a marked impact on circadian
oscillations [13]. To assess the eEect of molecular noise, it is necessary to resort
to a stochastic approach. In previous work [14–16], we compared the predictions of
deterministic and stochastic versions of a core model for circadian rhythms and showed
that robust circadian oscillations can be observed already when the maximum number of
mRNA and protein molecules is of the order of some tens and hundreds, respectively.
Here we study in more detail the stochastic dynamics of circadian oscillations,

focusing on the role of gene expression. After describing the deterministic and stochas-
tic versions of the model, we show how robust circadian oscillations are produced from
a “bar-code” pattern of gene expression. We focus on the eEect of the association and
dissociation rate constants characterizing the binding of the repressor protein to the
gene, and show that coherent oscillations only emerge once these parameters exceed a
critical value.

2. Description of the stochastic model for circadian oscillations

For our analysis, we resort to a Jve-variable model proposed for circadian oscilla-
tions of the PER protein and per mRNA in Drosophila [5,6,14]. This core model could
also apply to the FRQ oscillator in Neurospora [8]. Extensions of this one-feedback
loop model for Drosophila [7–9] and mammals [10] have also been proposed. The
model, schematized in Fig. 1, is based on the negative feedback exerted by a protein
on the expression of its gene. The gene is Jrst expressed in the nucleus and transcribed
into messenger RNA (mRNA). The latter is transported into the cytosol where it is
degraded and translated into the protein P0. This protein undergoes reversible phos-
phorylation, from P0 into P1 and from P1 into P2. The fully phosphorylated form of
the protein is marked up for degradation, and transported into the nucleus in a re-
versible manner. The nuclear form of the protein (PN ) represses the transcription of
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Fig. 1. Scheme of the core molecular model for circadian rhythms [5,6], based on the negative feedback
exerted by a protein on the expression of its gene (see text).

the gene. Phosphorylation, dephosphorylation, and degradation steps are assumed to
obey Michaelian kinetics, and repression is supposed to be cooperative.
In this core model for circadian rhythms [5,6], the temporal variation of the concen-

trations of mRNA (MP) and of the various forms of the regulatory protein, cytosolic
(P0; P1; P2) or nuclear (PN ), is governed by the following deterministic system of Jve
kinetic equations (see [5,6] for further details and deJnition of the parameters):

dMP
dt

= vs
KnI

KnI + P
n
N

− vm MP
Km +MP

; (1)

dP0
dt

= ksMP − v1 P0
K1 + P0

+ v2
P1

K2 + P1
; (2)

dP1
dt

= v1
P0

K1 + P0
− v2 P1

K2 + P1
− v3 P1

K3 + P1
+ v4

P2
K4 + P2

; (3)

dP2
dt

= v3
P1

K3 + P1
− v4 P2

K4 + P2
− vd P2

Kd + P2
− k1P2 + k2PN ; (4)

dPN
dt

= k1P2 − k2PN : (5)

This model accounts for the occurrence of sustained circadian oscillations in con-
tinuous darkness [5,6]. Similar results have been obtained in more detailed models
incorporating additional clock gene products [7–10]. To assess the eEect of molecular
noise on the temporal evolution of the genetic control system, we decomposed the lat-
ter into “elementary” reaction steps (see Table 1) and performed numerical simulations
by means of the Gillespie method [17,18]. In this approach, a parameter denoted �
allows us to control the number of molecules present in the system.

3. Deterministic versus stochastic circadian oscillations

Numerical simulations of the deterministic Eqs. (1)–(5) show that in a certain range
of parameter values sustained oscillations with a period close to 24 h occur (Fig. 2B).
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Table 1
Description of the stochastic model for circadian rhythms [16,17]

Reaction number Reaction step Probability of reaction step

1a G + PN
a1→GPN w1 = a1 × G × PN =�

1b GPN
d1→G + PN w2 = d1 × GPN

1c GPN + PN
a2→GPN2 w3 = a2 × GPN × PN =�

1d GPN2
d2→GPN + PN w4 = d2 × GPN2

1e GPN2 + PN
a3→GPN3 w5 = a3 × GPN2 × PN =�

1f GPN3
d3→GPN2 + PN3 w6 = d3 × GPN3

1g GPN3 + PN
a4→GPN4 w7 = a4 × GPN3 × PN =�

1h GPN4
d4→GPN3 + PN w8 = d4 × GPN4

1i [G; GPN ; GPN2 ; GPN3]
vs→MP w9 = vs × (G + GPN + GPN2 + GPN3)

2a MP + Em
km1→ Cm w10 = km1 × MP × Em=�

2b Cm
km2→ MP + Em w11 = km2 × Cm

2c Cm
km3→Em w12 = km3 × Cm

3 MP
ks→MP + P0 w13 = ks × MP

4a P0 + E1
k11→C1 w14 = k11 × P0 × E1=�

4b C1
k12→ P0 + E1 w15 = k12 × C1

4c C1
k13→ P1 + E1 w16 = k13 × C1

5a P1 + E2
k21→C2 w17 = k21 × P1 × E2=�

5b C2
k22→ P1 + E2 w18 = k22 × C2

5c C2
k23→ P0 + E2 w19 = k23 × C2

6a P1 + E3
k31→C3 w20 = k31 × P1 × E3=�

6b C3
k32→ P1 + E3 w21 = k32 × C3

6c C3
k33→ P2 + E3 w22 = k33 × C3

7a P2 + E4
k41→C4 w23 = k41 × P2 × E4=�

7b C4
k42→ P2 + E4 w24 = k42 × C4

7c C4
k43→ P1 + E4 w25 = k43 × C4

8a P2 + Ed
kd1→ Cd w26 = kd1 × P2 × Ed=�

8b Cd
kd2→ P2 + Ed w27 = kd2 × Cd

8c Cd
kd3→ Ed w28 = kd3 × Cd

9 P2
k1→ PN w29 = k1 × P2

10 PN
k2→ P2 w30 = k2 × PN

The Jve-variable model described by Eqs. (1)–(5) has been decomposed into 30 “elementary” steps. The
probability wi of each reaction is directly related to the kinetic parameters deJned in the deterministic version.
Steps (1a–h) pertain to the formation and dissociation of the various complexes between the gene promoter
and nuclear protein (PN ). G denotes the unliganded promoter of the gene, while GPN ; GPN2; GPN3 and
GPN4 denote the complexes formed by the gene promoter with 1, 2, 3 or 4 PN molecules. Step (1i) relates
to the active state of the promoter leading to expression of the gene and synthesis of mRNA (MP). In the
case considered we assume that only the complex between the promoter and four molecules of PN is inactive.
Steps (2) pertain to the degradation of MP by enzyme Em, through formation of the complex Cm. Step (3)
relates to synthesis of unphosphorylated clock protein (P0) at a rate proportional to the number of mRNA
molecules. Steps (4) refer to the phosphorylation of P0 into P1 by kinase E1, through formation of complex
C1. Steps (5) refer to the dephosphorylation of P1 into P0 by phosphatase E2, through formation of complex
C2. Steps (6) and (7) pertain to the corresponding phosphorylation of P1 into P2 and dephosphorylation
of P2 into P1. Steps (8) relate to the degradation of the phosphorylated form P2 by enzyme Ed, through
formation of complex Cd. Steps (9) and (10) refer, respectively, to entry of P2 into and exit of PN from
the nucleus.
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Fig. 2. Sustained circadian oscillations and limit cycles predicted by the deterministic and stochastic versions
of the core model for circadian rhythms. (A) Limit cycle and (B) oscillations obtained in the 5-variable
deterministic model governed by Eqs. (1)–(5), shown as a projection onto the PN − MP phase plane. (C)
Limit cycle and (D) oscillations obtained for the stochastic model listed in Table 1 by means of the Gillespie
method. In (C), the deterministic limit cycle obtained in (A) in corresponding conditions is shown as a thick
white curve. Concentrations are transformed into numbers of molecules through multiplication by parameter
�, which is equal to 100. Other parameter values are listed in Table 2.

These oscillations correspond to the evolution toward a limit cycle shown in Fig. 2A as
a projection onto the plane formed by the concentrations of mRNA (MP) and nuclear
clock protein (PN ). Oscillations obtained by applying the Gillespie algorithm are shown
in Fig. 2D, while the corresponding trajectory in the phase plane is represented in
Fig. 2C. To highlight the link between the deterministic and stochastic behaviors, we
represented in Fig. 2C the deterministic limit cycle as a thick white curve. The eEect of
molecular noise is merely to spread the limit cycle trajectory [14]. This noise-induced
spreading aEects both the amplitude and the period of the oscillations. The results
further indicate that robust circadian oscillations are still produced by the stochastic
model when the maximum numbers of mRNA and protein molecules are in the order
of tens and hundreds, respectively. It is only when these numbers decrease down to
a few tens that noise begins to overcome rhythmic behavior, even though somewhat
regular oscillations still subsist [14–16].
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4. Emergence of coherent oscillations from a bar-code pattern of gene expression

Among all the 30 reaction steps taking place in the core model, regulation of gene
expression is described by the successive binding of four molecules of nuclear protein
PN to the single copy of gene G; only the gene bound to four PN molecules is
considered to be inactive. The active form of the gene, G∗, thus takes into account the
forms G; GPN ; GPN2, and GPN3; G∗ = 0 means that the gene is in the inactive form
GPN4, while G∗ = 1 means that the gene can be transcribed, with a probability equal
to vs. When the number of PN molecules is low, the gene can stay active during a
long time and this gives rise to an increase in mRNA amount. When the number of
PN molecules is high, the gene undergoes numerous transitions between the active and
inactive forms, due to rapid binding and unbinding of the inhibitory protein. In this
case, the propensity for the gene to be transcribed is weaker, and mRNA is decreasing.
Gene activity thus takes the form of a “bar-code” pattern, as shown by Fig. 3.

In (A) a peak is drawn each time a molecule of mRNA is produced by step (1i)
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Fig. 3. Stochastic dynamics of gene expression. Each peak in (A) indicates that one transcriptional event
leading to mRNA synthesis takes place. In (B) similar results are shown, on an enlarged scale, over one
circadian period. Individual events of gene expression are grouped over 2-h intervals in (C), revealing the
emergence of circadian oscillations. Parameter values are given in Table 2.
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(see Table 1). In (B) the time course of gene expression over one circadian period
shows that transcriptional events do not occur in a uniform way during this time
interval. The oscillatory pattern appears even more clearly when we group transcription
events that occur during intervals of 2 h (C). This representation reveals the emergence
of a circadian variation in gene activity.

5. E ect of the rate constants characterizing repressor binding to the gene

We previously showed that the proximity of a bifurcation point increases the mag-
nitude of 5uctuations around the deterministic limit cycle [15,16]. In these studies,
we chose the maximum protein degradation rate, vd, as the control parameter because
in Drosophila light is known to reset the circadian clock through protein degrada-
tion [1–3]. Here, we study the eEect of varying parameters ai and di which repre-
sent the rate constants for association and dissociation of nuclear protein molecules
(PN ) to the gene (G). To this end, we divided ai and di (i = 1–4) by a scaling
factor, �. In Fig. 4 are shown the results of stochastic simulations of the
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Fig. 4. Trajectory in the phase space and irregular time series obtained by stochastic simulations of the core
model for circadian rhythms, for �=100 (A and B) and �=1000 (C and D). The curves were obtained for
� = 100; other parameter values are given in Table 2. The results should be compared with those obtained
in Fig. 6 for the corresponding, fully developed version of the deterministic model given in appendix.
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model of Table 1 for � = 100 (panels A and B) and � = 1000 (panels C and D).
As � increases up to 100 and 1000, oscillations with larger and larger amplitude and
increasing variability of the period are observed. The oscillations obtained for � = 1
are much more regular, as shown in Figs. 2C and D.
To clarify the nature of this phenomenon, it is useful to consider the deterministic

version of the detailed stochastic model considered in Table 1. To the 30 reaction
steps listed in Table 1 corresponds a deterministic system of 22 ordinary diEerential
equations (see appendix). Because the deterministic model is continuous, variables
G;GPN ; GPN2; GPN3 and GPN4 can now take all real intermediate values between 0
and 1. In this fully developed version of the deterministic model, parameters ai and di
appear explicitly, while they only appear in the form of a single equilibrium inhibition
constant, KI , in the reduced 5-variable deterministic model governed by Eqs. (1)–(5).
The results obtained with the fully developed deterministic model demonstrate the

existence of a bifurcation as a function of the scaling parameter �, as shown by the
bifurcation diagram in Fig. 5. When � increases above a critical value close to 100,
the system ceases to oscillate and evolves toward a stable steady state. In Fig. 6 we
compare numerical simulations performed with the 22-variable deterministic model for
� = 1000, 100 and 1. For � = 1 (E and F), large amplitude oscillations are observed.
For � = 100 (C and D), the system still undergoes sustained, low-amplitude oscilla-
tions. For � = 1000 (A and B), the system evolves towards a stable steady state, but
this steady state is excitable: a small perturbation bringing the system slightly away
from the steady state triggers a large excursion in the phase space, which corresponds
to a burst of transcriptional activity, before the system returns to the stable steady
state. This property of excitability also holds for the limit cycle observed for �= 100
(C and D). Thus, it is also possible to trigger large-amplitude peaks in gene transcrip-
tion starting from such small-amplitude oscillations.
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Fig. 5. Bifurcation diagram showing the onset of circadian oscillations in the deterministic model as a
function of the scaling parameter �, which divides the association and dissociation rate constants ai and di
characterizing the binding of the repressor protein to the gene. The curve shows the steady-state level of
mRNA, stable (solid line, MP SS(s)) or unstable (dashed line, MP SS(u)), as well as the maximum (MP max) and
minimum (MP min) mRNA concentration in the course of sustained oscillations. The diagram was determined
by numerical integration of Eqs. (A.1)–(A.22) for the fully developed deterministic model (see appendix).
Parameter values are given in Table 2.
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Fig. 6. Emergence of coherent circadian oscillations as a function of scaling parameter �. The curves were
obtained for the fully developed deterministic model, by numerical integration of Eqs. (A.1)–(A.22) listed
in appendix. (A) Trajectory in phase space, and (B) time evolution of the system, for � = 1000, from an
initial condition close to the stable steady state. Because the latter is excitable, the trajectory Jrst makes
a large excursion in phase space before returning to steady state. (C) Small-amplitude limit cycle and (D)
corresponding sustained oscillations for � = 100. (E) Large-amplitude limit cycle and (F) corresponding
sustained oscillations for � = 1. The latter case pertains to the situation predicted in Fig. 2 for the reduced,
5-variable deterministic model. Parameter values are given in Table 2.

These results explain why oscillations predicted by stochastic simulations become
highly irregular when the rate constants ai and di decrease below a critical value: as
shown by the study of the corresponding detailed deterministic model, such irregu-
lar oscillations re5ect repetitive, noise-induced large excursions away from a stable,
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excitable steady state or from a small-amplitude limit cycle close to the bifurcation
point. When � decreases, i.e., when the values of parameters ai and di increase—as in
the case considered in Figs. 2C and D, which corresponds to � = 1—the oscillations
become more regular and more robust, because the system operates well into the do-
main of sustained, large-amplitude oscillations.

6. Discussion

Previous comparison of deterministic and stochastic versions of a core model for
circadian rhythms based on negative autoregulation of gene expression showed that
this regulatory mechanism can produce robust circadian oscillations already when the
maximum number of protein and mRNA molecules is of the order of hundreds or
tens, respectively [14–16]. It is only at very low numbers of molecules of protein
and mRNA that noise begins to obliterate circadian periodicity. Here we focused on
the emergence of coherent oscillations in the stochastic dynamics of gene activation
and showed that even though gene activation undergoes rapid 5uctuations between an
active and an inactive state, giving rise to a “bar-code”-like pattern, circadian behavior
emerges when grouping transcription events that occur within a Jnite time interval,
e.g. of 2 h. Thus rapid gene activation on a short time scale, of the order of seconds
or minutes, leads to robust oscillations with a period of 24 h.
We also analyzed the eEect of varying the rate constants characterizing the reversible

binding of the repressor protein to the gene. A study of a fully developed version of
the deterministic model, in which these parameters appear explicitly, shows that below
a certain threshold value of these rate constants the system evolves toward an excitable
steady state. In the same conditions the stochastic simulations of the model produce
highly noisy oscillations with a great variability of the period. This behavior can be
compared to the results obtained by Vilar et al. [19]. Using a two-feedback loop model
these authors showed that, for parameter values giving rise to an excitable steady state,
highly variable oscillations are produced by the stochastic simulations. The occurrence
of such erratic oscillations is mainly due to the absence of a limit cycle attractor.
A stable limit cycle stabilizes the oscillations by damping the noise-induced 5uctua-
tions [20].
The maximum value of the bimolecular association rate constants ai (i = 1; : : : ; 4)

considered in Fig. 2 goes from 103 to 5 × 104 molecule−1 h−1 for � ranging from
10 to 500 (see Table 2). For a nuclear volume of 10−13 l, for which a concentration
of 1 nM corresponds to 60 molecule per nucleus, these values of ai correspond to
values of the bimolecular rate constants ranging from 1:5×1010 to 7:5×1011 M−1 s−1.
Such values are larger than the diEusion limit of 108–109 M−1 s−1 usually considered
for bimolecular rate constants. However, values of up to 1010 M−1 s−1 [21,22] or
even higher values [23] characterize the binding of a repressor to the gene promoter
because of a “facilitated diEusion” process mediated by encounter of the protein with
the DNA molecule followed either by sliding [22–25] or direct intersegment transfer
of the protein on DNA [22]. The values of bimolecular rate constants ai used by
other authors [13] were bounded by the “classical” diEusion limit, which may explain
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Table 2
Parameter values used for numerical simulations of the deterministic and stochastic models

Reaction number Deterministic model Developed version of the stochastic model (see Table 1)

1 vs = 0:5 nM h−1 vs = (0:5 × �) mol h−1,
KI = 2 nM a1 = Q mol−1 h−1, d1 = (160 × �) h−1,
n = 4 a2 = 10 × Q mol−1 h−1, d2 = (100 × �) h−1,

a3 = 100 × Q mol−1 h−1, d3 = (10 × �) h−1,
a4 = 100 × Q mol−1 h−1, d4 = (10 × �) h−1

2 vm = 0:3 nM h−1 km1 = 165 mol−1 h−1, km2 = 30 h−1, km3 = 3 h−1,
Km = 0:2 nM Em tot = Em + Cm = (0:1 × �) mol

3 ks = 2:0 h−1 ks = 2:0 h−1

4 v1 = 6:0 nM h−1 k11 = 146:6 mol−1 h−1, k12 = 200 h−1, k13 = 20 h−1

K1 = 1:5 nM E1 tot = E1 + C1 = (0:3 × �) mol
5 v2 = 3:0 nM h−1 k21 = 82:5 mol−1 h−1, k22 = 150 h−1, k23 = 15 h−1,

K2 = 2:0 nM E2 tot = E2 + C2 = (0:2 × �) mol
6 v3 = 6:0 nM h−1 k31 = 146:6 mol−1 h−1, k32 = 200 h−1, k33 = 20 h−1,

K3 = 1:5 nM E3 tot = E3 + C3 = (0:3 × �) mol
7 v4 = 3:0 nM h−1 k41 = 82:5 mol−1 h−1, k42 = 150 h−1, k43 = 15 h−1,

K4 = 2:0 nM E4 tot = E4 + C4 = (0:2 × �) mol
8 vd = 1:5 nM h−1 kd1 = 1650 mol−1 h−1, kd2 = 150 h−1, kd3 = 15 h−1,

Kd = 0:1 nM Ed tot = Ed + Cd = (0:1 × �) mol
9 k1 = 2:0 h−1 k1 = 2:0 h−1

10 k2 = 1:0 h−1 k2 = 1:0 h−1

The reaction number refers to the corresponding lines in Table 1. In the last column, “mol” means
molecule. In the developed stochastic model, when varying � to modify the numbers of molecules involved
in the circadian oscillatory mechanism, we wish to keep the number of gene promoter (G) equal to unity
without altering the relative weights of the diEerent probabilities wi , so as to keep dynamic behavior consistent
with that predicted by the corresponding deterministic model governed by Eqs. (1)–(5). The numbers of
enzyme molecules and the kinetic constants related to the steps involving G are therefore multiplied by
� in the last column that lists the parameter values for the detailed model. In the same column, to allow
for cooperativity of the repression process, the parameters aj and dj (j = 1; : : : ; 4) which appear in steps
1a–h in Table 1, are chosen so that the dissociation constant Kj = dj=aj (with K4

I =
∏4
j=1 Kj) decreases

as the number of molecules of PN bound to the promoter increases. For simulations of the fully developed
deterministic model governed by Eqs. (A.1)–(A.22) listed in appendix, parameter values are those given in
the third column, with � = 1 and “mol” replaced by nM.

the absence of robust circadian oscillations reported in that work. As shown in the
present study, indeed, at such lower values of ai the oscillations are markedly aEected
by molecular noise, while robust circadian oscillations can occur with physiologically
realistic, higher values of these kinetic parameters.
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Appendix

The fully developed deterministic model, corresponding to the stochastic fully
developed version of the core model for circadian rhythms, is governed by the follow-
ing 22 diEerential equations, where quantities in brackets refer to complexes between
the gene G and one or several molecules of repressor PN (for consistency with respect
to rate constants, units of G and of its complexes are expressed in nM):

dG
dt

= −a1GPN + d1[GPN ] ; (A.1)

d[GPN ]
dt

= a1GPN − d1[GPN ] − a2[GPN ]PN + d2[GPN2] ; (A.2)

d[GPN2]
dt

= a2[GPN1]PN − d2[GPN2] − a3[GPN2]PN + d3[GPN3] ; (A.3)

d[GPN3]
dt

= a3[GPN2]PN − d3[GPN3] − a4[GPN3]PN + d4[GPN4] ; (A.4)

d[GPN4]
dt

= a4[GPN3]PN − d4[GPN4] ; (A.5)

dM
dt

= vs(G + [GPN ] + [GPN2] + [GPN3]) − km1MEm + km2Cm ; (A.6)

dEm
dt

= −km1MEm + km2Cm + km3Cm ; (A.7)

dCm
dt

= km1MEm − km2Cm − km3Cm ; (A.8)

dP0
dt

= ksM − k11P0E1 + k12C1 + k23C2 ; (A.9)

dE1
dt

= −k11P0E1 + k12C1 + k13C1 ; (A.10)

dC1

dt
= k11P0E1 − k12C1 − k13C1 ; (A.11)

dP1
dt

= −k21P1E2 + k22C2 + k13C1 − k31P1E3 + k32C3 + k43C4 ; (A.12)

dE2
dt

= −k21P1E2 + k22C2 + k23C2 ; (A.13)

dC2

dt
= k21P1E2 − k22C2 − k23C2 ; (A.14)

dP2
dt

= k33C3 − k41P2E4 + k42C4 − kd1P2Ed + kd2Cd − k1P2 + k2PN ; (A.15)
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dE3
dt

= −k31P1E3 + k32C3 + k33C3 ; (A.16)

dC3

dt
= k31P1E3 − k32C3 − k33C3 ; (A.17)

dE4
dt

= −k41P2E4 + k42C4 + k43C4 ; (A.18)

dC4

dt
= k41P2E4 − k42C4 − k43C4 ; (A.19)

dEd
dt

= −kd1P2Ed + kd2Cd + kd3Cd ; (A.20)

dCd
dt

= kd1P2Ed − kd2Cd − kd3Cd ; (A.21)

dPN
dt

=−a1GPN + d1[GPN ] − a2[GPN1]PN + d2[GPN2] − a3[GPN2]PN
+d3[GPN3] − a4[GPN3]PN + d4[GPN4] + k1P2 − k2PN (A.22)

with Gtot = G + GPN + GPN2 + GPN3 + GPN4 = 1.
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