
Stochastic Models for Circadian
Oscillations: Emergence of a
Biological Rhythm
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ABSTRACT: Nearly all living organisms display circadian oscillations characterized
by a period close to 24 h. These rhythms originate from the negative autoregulation of
gene expression. Deterministic models based on such genetic regulatory processes
account for the occurrence of circadian rhythms in constant environmental conditions
(e.g., constant darkness), for entrainment of these rhythms by light–dark cycles, and for
their phase-shifting by light pulses. When the numbers of protein and mRNA molecules
involved in the oscillations are small, as may occur in cellular conditions, it becomes
necessary to resort to stochastic simulations to assess the influence of molecular noise
on circadian oscillations. We address the effect of molecular noise by considering the
stochastic version of a core deterministic model previously proposed for circadian
oscillations of the PER protein and its mRNA in Drosophila. The model is based on
cooperative repression of the per gene by the PER protein. Numerical simulations of the
stochastic version of the model are performed by means of the Gillespie method. The
predictions of the stochastic approach compare well with those of the deterministic
model with respect to both sustained oscillations of the limit cycle type and the
influence of the proximity from a bifurcation point below which the system evolves to a
stable steady state. Stochastic simulations indicate that robust circadian oscillations can
emerge at the cellular level, even when the maximum numbers of mRNA and protein
molecules involved in the oscillations are of the order of only a few tens or hundreds.
The stochastic simulations also reproduce the evolution toward a strange attractor in
conditions where an extended version of the deterministic model admits chaotic
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behavior. These results show how regulatory feedback processes at the cellular level
allow the emergence of a coherent biological rhythm out of molecular noise. © 2004

Wiley Periodicals, Inc. Int J Quantum Chem 98: 228–238, 2004
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Introduction

H ow cohorts of innumerable molecules syn-
chronize their dynamic behavior to produce

periodic oscillations observable on a macroscopic
level represents one of the most remarkable mani-
festations of self-organization in chemical kinetics.
The work of Ilya Prigogine has shown that such
oscillatory phenomena correspond to the evolution
toward a temporal dissipative structure that occurs
beyond a critical point of instability of a nonequi-
librium steady state; the oscillations originate from
appropriate nonlinearities of the underlying kinetic
equations and require energy dissipation for their
maintenance [1]. If oscillations are well known in a
number of chemical reactions, the question arises as
to why periodic behavior is so common in biologi-
cal systems. The main reasons are that living organ-
isms are open systems that operate far from ther-
modynamic equilibrium, and are subjected to a
variety of regulatory processes that introduce non-
linearities, which favor the occurrence of periodic
behavior [2].

The evolutionary pressure that acts on living
systems has allowed the development of such
regulations, which serve to optimize the function-
ing of unicellular or multicellular organisms,
hence the profusion of rhythmic phenomena that
are encountered at all levels of biological organi-
zation. Thus, in single cells, oscillations can occur
with periods ranging from milliseconds to 24 h,
depending on the type of regulatory mechanism
involved in generating the cellular rhythm. The
fastest rhythms rely on the regulation of ion chan-
nels in electrically excitable cells, while slower
rhythms originate from the regulation of gene
expression.

Most living organisms have developed the capa-
bility of generating autonomously sustained oscil-
lations with a period close to 24 h. These oscilla-
tions, known as circadian rhythms, are endogenous
because they can occur in constant environmental
conditions, e.g., constant darkness [3]. Circadian
rhythms can be entrained by light–dark cycles, al-
lowing living organisms to adapt to the natural

periodicity of their environment. The prominence
of circadian oscillations is such that they form the
core subject of chronobiology, the study of biolog-
ical rhythms.

The molecular bases of circadian rhythms rep-
resent a topic of key importance for comprehend-
ing the dynamics of cellular processes and the
physiology of living organisms. Experimental
studies during the past decade have shed much
light on the molecular mechanism of circadian
rhythms. Initial studies pertained to the fungus
Neurospora [4] and the fly Drosophila [5]. Molecu-
lar studies of circadian rhythms have since been
extended to cyanobacteria, plants, and mammals
[4 –7]. In all cases investigated so far, the molec-
ular mechanism of circadian oscillations relies on
the negative autoregulation exerted by a protein
on the expression of its gene [4 – 8]. Thus, in Dro-
sophila, the proteins PER and TIM form a complex
that indirectly represses the activation of the per
and tim genes, while in Neurospora it is the FRQ
protein that represses the expression of its gene
frq [4 – 6]. The situation in mammals resembles
that observed in Drosophila, but it appears that,
instead of TIM, it is the CRY protein that forms a
regulatory complex with a PER protein to inhibit
the expression of the per genes [7]. Light can
entrain circadian rhythms by inducing degrada-
tion of the TIM protein in Drosophila, and expres-
sion of the frq and per genes in Neurospora and
mammals, respectively [4 –7].

A number of mathematical models for circadian
rhythms have been proposed [9–15] on the basis of
these experimental observations. These models are
of a deterministic nature and take the form of a
system of coupled ordinary differential equations.
The models predict that, in a certain range of pa-
rameter values, the genetic control network under-
goes sustained oscillations of the limit cycle type
corresponding to the circadian rhythm, whereas
outside this range the gene network operates in a
stable steady state.

The question arises as to whether deterministic
models are always appropriate for the descrip-
tion of circadian clocks [16]. Indeed, the number
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of molecules involved in the regulatory mecha-
nism producing circadian rhythms at the cellular
level may well be reduced. This number could
vary from a few thousands down to hundreds
and even a few tens of protein or messenger RNA
molecules in each rhythm-producing cell. At such
low concentrations, it is more appropriate to re-
sort to a stochastic approach to study the molec-
ular bases of the oscillatory phenomenon. Molec-
ular fluctuations can be taken into account by
describing the chemical reaction system as a
birth-and-death stochastic process governed by a
master equation [17]. In a given reaction step,
molecules of participating species are either pro-
duced (birth) or consumed (death). At each step
is associated a transition probability proportional
to the numbers of molecules of involved chemical
species and to the chemical rate constant of the
corresponding deterministic model. A numerical
algorithm that implements such a master equa-
tion approach to stochastic chemical dynamics
was introduced by Gillespie [18, 19]. We shall use
stochastic simulations to test the robustness of
circadian rhythms with respect to fluctuations,
and to investigate the progressive emergence of a
biological rhythm out of the disorder of molecu-
lar noise.

Deterministic and Stochastic
Versions of the Core Model for
Circadian Oscillations

In a previous publication [20] we compared the
stochastic and deterministic versions of a core
molecular model for circadian oscillations based
on the negative regulation exerted by a protein on
the expression of its gene. To perform stochastic
simulations, we resorted to the Gillespie algo-
rithm [18, 19], after decomposing the determinis-
tic model into elementary steps. We studied the
effect of molecular noise by assessing the robust-
ness of circadian oscillations as a function of the
number of interacting molecules. We showed that
robust circadian rhythmicity can occur when the
maximum numbers of mRNA and clock protein
molecules are in the tens and hundreds, respec-
tively. Cooperativity of repression and periodic
forcing by light– dark cycles enhance the robust-
ness of circadian oscillations. In subsequent work
[21, 22], we compared two stochastic versions of
this core model: one fully developed into elemen-

tary steps, and the other nondeveloped. We
showed that stochastic treatment of these two
versions of the model for circadian rhythms yield
similar results.

The model, schematized in general form in
Figure 1, is based on the negative feedback ex-
erted by a protein (referred to below as clock
protein) on the expression of its gene. The deter-
ministic version of this model, previously pro-
posed for circadian oscillations of the PER protein
and per mRNA in Drosophila, accounts for the
occurrence of sustained oscillations in continuous
darkness, phase-shifting by light pulses, and en-
trainment by light– dark cycles. Similar results
have been obtained in more detailed models in-
corporating additional clock gene products such

FIGURE 1. Scheme of the deterministic five-variable

core model considered for circadian oscillations, with

indication of parameters characterizing the different

steps [9, 10]. The model is based on the repression ex-

erted by the nuclear form of a clock protein (PN) on the

transcription of its gene into mRNA (MP). mRNA is syn-

thetized in the nucleus and transferred to the cytosol,

where it accumulates at a maximum rate vs; there it is

degraded by an enzyme of maximum rate vm and

Michaelis constant Km. The rate of synthesis of the pro-

tein P0, proportional to MP, is characterized by an ap-

parent first-order rate constant ks. Parameters vi and Ki

(i � 1,…,4) denote the maximum rate(s) and Michaelis

constant(s) of the kinase and phosphatase involved in

the reversible phosphorylation of P0 into P1 and P1 into

P2, respectively. The fully phosphorylated form P2 is

degraded by an enzyme of maximum rate vd and

Michaelis constant Kd, and is transported into the nu-

cleus at a rate characterized by the apparent first-order

rate constant k1. Transport of the nuclear form of the

clock protein (PN) into the cytosol is characterized by

the apparent first-order rate constant k2. The negative

feedback exerted by the nuclear clock protein on gene

transcription is described by an equation of the Hill

type, in which n denotes the degree of cooperativity,

and KI the threshold constant for repression.
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as TIM and CLOCK [11–15]. However, for sim-
plicity, we will focus on the model based on the
regulation exerted by PER alone. The model of
Figure 1 can thus serve as a core model capable of
generating circadian oscillations, and does not
aim at representing the current, more complex
view of the molecular mechanism of the Drosoph-
ila and mammalian circadian clocks, which is
known to involve a larger number of interacting
proteins [5–7]. In this simple form, the model also
applies to the case of Neurospora [3], where circa-
dian rhythms originate from the negative feed-
back exerted by the FRQ protein on the expres-
sion of its gene.

In the deterministic version of the model sche-
matized in Figure 1, the temporal variation of the
concentrations of mRNA (MP) and of the various
forms of clock protein, cytosolic (P0, P1, P2) or nu-
clear (PN), is governed by the following system of
five kinetic equations [9, 10, 20]:

dMP

dt
� �s

KI
n

KI
n

� PN
n � �m

MP

Km � MP

dP0

dt
� ksMP � �1

P0

K1 � P0

� �2

P1

K2 � P1

dP1

dt
� �1

P0

K1 � P0

� �2

P1

K2 � P1

� �3

P1

K3 � P1

� �4

P2

K4 � P2

dP2

dt
� �3

P1

K3 � P1

� �4

P2

K4 � P2

� �d

P2

Kd � P2

� k1P2 � k2PN

dPN

dt
� k1P2 � k2PN (1)

The stochastic version of the model was studied
by means of the numerical algorithm introduced
by Gillespie [18, 19], which implements a master
equation approach to stochastic chemical dynam-
ics [17]. This approach has previously been fol-
lowed for studying the effect of noise on chemical
oscillations [23, 24]. The Gillespie method associ-
ates a probability with each reaction; at each time

step, the algorithm stochastically determines the
reaction that takes place according to its proba-
bility, as well as the time interval to the next
reaction. The numbers of molecules of the differ-
ent reacting species, as well as the probabilities,
are updated at each time step. In this approach a
parameter denoted � permits the modulation of
the number of molecules present in the system
[18, 19].

To assess the effect of molecular noise on cir-
cadian oscillations, we used this method to per-
form stochastic simulations of the core determin-
istic model described above, after decomposing it
into a detailed reaction system consisting of 30
elementary steps [20]. These steps are listed in
Table I below, with the probability of their occur-
rence, denoted wi (i � 1, …, 30). Each wi is the
product of a rate constant times the number(s) of
molecules involved in the reaction step. Because
each enzymatic reaction is fully decomposed into
elementary steps, enzyme–substrate complexes
are considered explicitly. The detailed reaction
system thus contains 22 variables instead of 5 in
the deterministic model. In Table I, the central
column shows the reaction steps involving the
indicated molecular species, with the rate con-
stant indicated above the arrow. In the right col-
umn, showing the probability of occurrence of
the various reaction steps, italicized capitals de-
note the numbers of molecules of the correspond-
ing species involved in the particular reaction
step.

Steps (1– 8) pertain to the formation and disso-
ciation of the various complexes between the
gene promoter and nuclear protein (PN). G de-
notes the unliganded promoter of the gene, while
GPN, GPN2, GPN3, and GPN4 denote the complexes
formed by the gene promoter with 1, 2, 3, or 4 PN

molecules. Step (9) relates to the active state of
the promoter leading to expression of the gene
and synthesis of mRNA (MP). In the case consid-
ered we assume that only the complex between
the promoter and four molecules of PN is inactive.
Steps (10 –12) pertain to the degradation of MP by
enzyme Em, through formation of the complex
Cm. Step (13) relates to synthesis of unphospho-
rylatyed clock protein (P0) at a rate proportional
to the number of mRNA molecules. Steps (14 –16)
refer to the phosphorylation of P0 into P1 by
kinase E1, through formation of complex C1. Steps
(17–19) refer to the dephosphorylation of P1 into
P0 by phosphatase E2, through the formation of
complex C2. Steps (20 –25) pertain to the corre-
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TABLE I ______________________________________________________________________________________________

Decomposition of the core deterministic model of Fig. 1 into detailed reaction steps.*

Reaction no. Reaction step Probability of reaction

1 G � PNO¡

a1

GPN
w1 � a1 � G � PN/�

2 GPNO¡

d1

G � PN
w2 � d1 � GPN

3 GPN � PNO¡

a2

GPN2
w3 � a2 � GPN � PN/�

4 GPN2O¡

d2

GPN � PN
w4 � d2 � GPN2

5 GPN2 � PNO¡

a3

GPN3
w5 � a3 � GPN2 � PN/�

6 GPN3O¡

d3

GPN2 � PN3
w6 � d3 � GPN3

7 GPN3 � PNO¡

a4

GPN4
w7 � a4 � GPN3 � PN/�

8 GPN4O¡

d4

GPN3 � PN
w8 � d4 � GPN4

9 �G, GPN, GPN2, GPN3� ¡

�s

MP
w9 � �s � (G � GPN � GPN2 � GPN3)

10 MP � EmO¡

km1

Cm
w10 � km1 � MP � Em/�

11 CmO¡

km2

MP � Em
w11 � km2 � Cm

12 CmO¡

km3

Em
w12 � km3 � Cm

13 MP ¡

ks

MP � P0
w13 � ks � MP

14 P0 � E1O¡

k11

C1
w14 � k11 � P0 � E1/�

15 C1O¡

k12

P0 � E1
w15 � k12 � C1

16 C1O¡

k13

P1 � E1
w16 � k13 � C1

17 P1 � E2O¡

k21

C2
w17 � k21 � P1 � E2/�

18 C2O¡

k22

P1 � E2
w18 � k22 � C2

19 C2O¡

k23

P0 � E2
w19 � k23 � C2

20 P1 � E3O¡

k31

C3
w20 � k31 � P1 � E3/�

21 C3O¡

k32

P1 � E3
w21 � k32 � C3

22 C3O¡

k33

P2 � E3
w22 � k33 � C3

23 P2 � E4O¡

k41

C4
w23 � k41 � P2 � E4/�

24 C4O¡

k42

P2 � E4
w24 � k42 � C4

25 C4O¡

k43

P1 � E4
w25 � k43 � C4

26 P2 � EdO¡

kd1

Cd
w26 � kd1 � P2 � Ed/�

27 CdO¡

kd2

P2 � Ed
w27 � kd2 � Cd

28 CdO¡

kd3

Ed
w28 � kd3 � Cd

29 P2 ¡

k1

PN
w29 � k1 � P2

30 PN ¡

k2

P2
w30 � k2 � PN

*Steps 1–8 have been developed for the case n � 4. Only steps 1–6, 1–4, and 1–2 must be considered if the maximum number

of PN molecules binding to the gene promoter is equal to 3, 2, or 1.
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sponding phosphorylation of P1 into P2 and de-
phosphorylation of P2 into P1. Steps (26 –28) relate
to the degradation of the phosphorylated form P2

by enzyme Ed, through formation of complex Cd.
Steps (29) and (30) refer, respectively, to entry of
P2 into and exit of PN from the nucleus.

FIGURE 2. Sustained oscillations (left column) and limit cycle (right column) predicted by the deterministic and sto-

chastic versions of the model for circadian rhythms. Bottom row: Sustained oscillations of mRNA (MP) and nuclear

clock protein (PN) obtained in the five-variable deterministic model governed by Eq. (1) and corresponding limit cycle

shown as a projection onto the MP-PN phase plane; the arrow indicates the direction of movement along the closed

trajectory. Top and middle panels: limit cycle and sustained oscillations (represented by the time course of the num-

ber of mRNA and nuclear clock protein molecules) predicted by the stochastic model for values of parameter � in-

creasing from 10 (upper row) to 500 (middle row). The results, obtained in the presence of molecular noise, should be

compared with those obtained with the deterministic model (bottom row). Stochastic simulations were performed by

means of the Gillespie method [18, 19] with the model listed in Table I. Parameter values for deterministic and sto-

chastic simulations are given in Appendix in ref. 20 (see http://www.pnas.org/cgi/content/full/022628299/DC1).
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Instead of decomposing the deterministic
model into elementary steps (developed model),
nonlinear kinetic functions (e.g., Michaelis–Men-
ten expressions, or the repression function given
by an expression of the Hill type) can simply be

included in the probabilities associated with the
global reaction steps (nondeveloped model). The
developed and nondeveloped versions of the sto-
chastic model for circadian rhythms yield similar
results [21, 22].

FIGURE 3.
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Emergence of Periodic Oscillations
From Molecular Noise

For appropriate parameter values, the determin-
istic model predicts the occurrence of sustained
oscillations (Fig. 2, bottom left), which correspond
to the evolution toward a closed curve, known as a
limit cycle, in the phase plane (Fig. 2, bottom right).
The typical oscillatory behavior of the five-variable
system is illustrated by the time evolution of the
concentrations of mRNA (MP) and of nuclear clock
protein (PN).

Can these predictions of deterministic oscillatory
behavior be recovered when resorting to stochastic
simulations? Figure 2 (top and middle rows) shows
the results of such simulations of the core model for
circadian rhythms performed for � � 10 and 500,
respectively. Figure 2 (left column) shows the time
evolution of two variables of the model, the num-
bers of molecules (or concentrations; Fig. 2, bottom
row) of mRNA (MP) and of nuclear clock protein
(PN). When the maximum numbers of molecules of
mRNA and nuclear protein are small, of the order
of 30 and 150, respectively (� � 10), the effect of
molecular noise is important. Nevertheless, repeti-
tive peaks of nuclear protein are clearly discernible
(left, upper), but these oscillations are highly irreg-
ular. The corresponding trajectory in the phase
plane (top right) takes the form of a highly noisy
limit cycle. For larger values of �, the oscillations
are much more regular (middle left). In the case
considered (� � 500), the values of the maximum

numbers of molecules are much higher, of the order
of 800 and 4000 for the mRNA and nuclear protein,
respectively. The corresponding limit cycle is
closely related to the corresponding deterministic
trajectory (bottom right). The noisy limit cycle pos-
sesses a certain thickness, particularly noticeable
along the branch going from the maximum in
mRNA to the maximum in nuclear protein.

Thus, stochastic simulations show that even
when the maximum numbers of molecules remain
reduced, of the order of a few tens and a few
hundreds for the mRNA and nuclear protein, the
deterministic approach provides a faithful picture
of the onset of circadian oscillations. The agreement
between the stochastic and deterministic ap-
proaches increases with the value of �, i.e., with the
number of molecules participating in the oscillatory
mechanism.

In the deterministic model, sustained oscillations
occur when a parameter exceeds a critical bifurca-
tion value. This is illustrated in Figure 3 (bottom) in
the bifurcation diagram established as a function of
parameter vd, which measures the rate of degrada-
tion of the clock protein. The diagram shows the
steady state concentration of mRNA, which is ei-
ther stable (solid line) or unstable (dashed line), as
a function of vd. In Figure 3A–D, the white dot or
white curve shows the steady state or limit cycle
predicted in the phase plane by the deterministic
model for the corresponding parameter values
(A–D) in the bifurcation diagram. The four dia-
grams thus correspond to the four vd values indi-

FIGURE 3. Effect of the proximity from a bifurcation point on the effect of molecular noise in the stochastic model

for circadian rhythms. (A–D) Results of deterministic (white dot or curve) or stochastic simulations (black curves) of

trajectories followed in the phase plane for the four increasing values of parameter vd corresponding to those shown

in the bifurcation diagram (bottom panel) : 0.2 (A), 0.5 (B), 0.7 (C), and 1.5 (D); these values, to be multiplied by � �

100, are expressed here in molecules per h. The following situations are illustrated in the four panels: (A) Fluctuations

around a stable steady state. (B) Fluctuations around a stable steady state for a value of vd close to the bifurcation

point; damped oscillations occur in these conditions when the system is displaced from the stable steady state. The

white dot (A, B) represents the stable steady state predicted by the deterministic version of the model in correspond-

ing conditions. (C) Oscillations observed close to the bifurcation point. (D) Oscillations observed further from the bi-

furcation point, well into the domain of sustained oscillations. The thick white curve (C, D) represents the limit cycle

predicted by the deterministic version of the model governed by Eq. (1), in corresponding conditions, for the same

values of vd expressed in nMh�1. The smaller amplitude of the limit cycle in (C) as compared to the limit cycle in (D)

is associated with an increased influence of molecular noise. The stochastic curves are obtained by means of the

Gillespie algorithm applied to the model of Table I (see refs. 20–22). Bottom: Bifurcation diagram established for the

deterministic version of the model of Figure 1 as a function of parameter vd (in nM/h), which measures the maximum

rate of the clock protein degradation. The curve shows the steady-state level of mRNA, stable (solid line) or unstable

(dashed line), as well as the maximum and minimum concentration of mRNA in the course of sustained circadian os-

cillations. The vertical dashed lines refer to the four values considered for vd in A–D, respectively. The diagram is es-

tablished by means of the program AUTO [29] applied to Eq. (1). Parameter values are as listed in refs. 21 and 22.
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cated by dashed vertical lines in Figure 3 (bottom).
The corresponding results of stochastic simulations
for � � 100 are superimposed on the predictions
from the deterministic model.

In Figure 3A, the deterministic system evolves to
a stable steady state far from the bifurcation point;
stochastic simulations show low-amplitude fluctu-
ations around the deterministic steady state. In Fig-
ure 3B the deterministic system evolves to a stable
steady state close to the bifurcation point; stochastic
simulations show fluctuations of larger amplitude
around the deterministic steady state. Just beyond
the bifurcation point (Fig. 3C), the deterministic
system undergoes limit cycle oscillations of re-
duced amplitude; stochastic simulations show low-
amplitude noisy oscillations around the determin-
istic limit cycle, which resemble the fluctuations
shown in Figure 3B. Finally, in the middle of the
oscillatory domain, far from the bifurcation point
(Fig. 3D), the deterministic system undergoes limit
cycle oscillations of large amplitude; stochastic sim-
ulations show large-amplitude, relatively less noisy
oscillations around the deterministic limit cycle.

The data presented in Figure 3 further confirm
that stochastic simulations allow us to recover the
dynamics predicted by the deterministic model. Be-
low a critical parameter value the system displays
low-amplitude fluctuations around a stable steady
state, while above this value sustained oscillations
occur. Moreover, the effect of fluctuations is en-
hanced by the proximity from the bifurcation point.

As previously done for model chemical reaction
systems [25], stochastic simulations can also be
used to study the occurrence of chaos in the pres-
ence of molecular noise in models for circadian
oscillations [22]. We have previously reported the
occurrence of autonomous chaos in an extension of
the model shown in Figure 1 [26]. This extended
10-variable model was previously proposed for
circadian oscillations of the PER and TIM pro-
teins and of per and tim mRNAs in Drosophila [11,
12]. The model is based on the negative feedback
exerted by the complex between the nuclear PER
and TIM proteins on the expression of their
genes. Although the physiological significance of
chaotic behavior remains an open question
within the context of circadian rhythms, its oc-
currence in a model for circadian oscillations al-
lows us to assess the effect of molecular noise on
chaos in a realistic model based on genetic regu-
lation.

For some parameter values, in conditions corre-
sponding to continuous darkness, sustained aperi-
odic oscillations occur in the extended model [26],
which correspond to the evolution toward a strange
attractor in the phase space (Fig. 4A). For � � 1000,
Figure 4B shows the results of stochastic simula-
tions performed for parameter values correspond-
ing to those producing chaos in the deterministic
model in Figure 4A. The results indicate that chaos
persists in the presence of noise, even though the
structure of the strange attractor begins to be

FIGURE 4. Effect of molecular noise on autonomous chaos. The strange attractor predicted [26] by the 10-variable

deterministic model for circadian rhythms (A) is recovered in (B) by stochastic simulations [22].
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blurred when the number of molecules decreases
and the amplitude of fluctuations rises. Neverthe-
less the small curler-like substructure that charac-
terizes the strange attractor in the (Fig. 4A) is
clearly visible in the attractor obtained by stochastic
simulations (Fig. 4B).

To compare the effect of molecular noise on pe-
riodic and chaotic oscillations we have used else-
where Poincaré sections [22]. For the case of peri-
odic oscillations, instead of a single point obtained
with deterministic simulations, stochastic simula-
tions yield a cloud of points surrounding the deter-
ministic Poincaré section; the smaller the number of
molecules, the more scattered the cloud. In the case
of chaos, instead of a single point the intersection in
the deterministic model takes the form of an open
continuous curve. Stochastic simulations produce a
cloudy version of this curve; the scattering of the
points in this cloud increases as the number of
molecules decreases [22]. The use of Poincaré sec-
tions thus leads to a clear distinction between noisy
limit cycle oscillations and chaotic oscillations sub-
jected to noise.

Concluding Remarks

Circadian rhythms represent a prototype of tem-
poral self-organization in biological systems. These
rhythms originate from the negative autoregulation
of gene expression. Deterministic models based on
such regulatory processes have been proposed for
circadian rhythms in Drosophila and Neurospora.
However, when numbers of participating mole-
cules are reduced and molecular noise becomes
significant, the question arises as to whether genetic
control mechanisms can give rise to coherent circa-
dian oscillations at the cellular level [16]. In the
presence of reduced numbers of molecules of the
mRNA and protein species involved in the circa-
dian clock mechanism, this issue must be addressed
by means of stochastic simulations [20].

The stochastic approach shows that as in the
deterministic case, sustained oscillations can occur
when control parameters pass critical values (Fig.
3). At first, just beyond the bifurcation point, when
the amplitude of the deterministic limit cycle is
small, the effect of molecular noise is important and
fluctuations prevent the emergence of regular peri-
odic behavior (Fig. 3C). Once the system operates
far from the bifurcation point, well into the domain
of sustained oscillations, a coherent rhythm

emerges as periodic behavior overcomes the damp-
ening effect of molecular noise (Fig. 3D).

The study of the stochastic version of a core
model for circadian oscillations based on negative
autoregulation of a clock gene by its protein prod-
uct further indicates that robust circadian oscilla-
tions, comparable to those predicted by the deter-
ministic approach, can occur even when the
maximum numbers of mRNA and clock protein
molecules are in the tens and hundreds, respec-
tively. The robustness of circadian rhythms, quan-
tified by the period distribution and the half-time of
the autocorrelation function [20], is enhanced when
the cooperativity of the repression process increases
and when the numbers of mRNA and protein mol-
ecules involved in the oscillatory mechanism be-
come larger. These numerical results were corrob-
orated by a recent analytical study [27]. Stochastic
simulations indicate, moreover, that forcing by a
light–dark cycle stabilizes the phase of the oscilla-
tions [20].

Autonomous chaos has previously been de-
scribed in the deterministic PER-TIM model for
circadian rhythms in Drosophila [26]. As for periodic
circadian oscillations, chaotic behavior is recovered
when stochastic simulations are performed for pa-
rameter values corresponding to chaos in the deter-
ministic model. Beyond a noisy appearance attrib-
utable to fluctuations in the presence of reduced
numbers of mRNA and protein molecules, the
structure of the strange attractor remains discern-
ible (Fig. 4) in agreement with results obtained in
models for chemical oscillations [25, 28]. The agree-
ment between the stochastic and deterministic ap-
proaches therefore holds for periodic oscillations,
as well as for chaotic behavior. Even in the presence
of relatively small numbers of participating mole-
cules, of the order of only tens or hundreds, peri-
odic or chaotic oscillations can readily overcome
molecular noise. The case of circadian rhythms ex-
emplifies how regulatory feedback loops giving rise
to nonequilibrium instabilities are associated with
the emergence of oscillatory behavior. Stochastic
simulations allow us to grasp the very onset of a
coherent biological rhythm out of molecular noise.
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