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We report a study of the influence of molecular fluctuations on a limit-cycle model of circadian
rhythms based on the regulatory network of a gene involved in a biochemical clock. The molecular
fluctuations may become important because of the low number of molecules involved in such
genetic regulatory networks at the subcellular level. The molecular fluctuations are described by a
birth-and-death stochastic process ruled by the chemical master equation of Nicolis and co-workers
and simulated by Gillespie’'s algorithm. The robustness of the oscillations is characterized, in
particular, by the probability distribution of the first-return times and the autocorrelation functions
of the noisy oscillations. The half-life of the autocorrelation functions is studied as a function of the
size of the system which controls the magnitude of the molecular fluctuations and of the degree of
cooperativity of some reaction steps of the biochemical clock. The role of the attractivity of the limit
cycle is also discussed. @002 American Institute of Physic§DOI: 10.1063/1.1475765

I. INTRODUCTION repression on the transcription of its own géiéodels for
_ _ o biological clocks based on this negative regulation have been

When driven far from the thermodynamic equilibrium, proposed for the PER protein in the Myrosophila* and

chemical or biochemical reactions may generate oscillationgoy the FRQ protein in the fungusieurospora® However,
In macroscopic systems, such reactions are described Qyyeral other genes involved in this mechanism have been

nonlinear_differential quations ruliqg the time evolution Of_identified such as, iBrosophila thetim gene responsible for
the chemical concentrations according to the laws of cheml,fhe TIM protein which forms a complex with the PER pro-

cal kinetics. Oscillating reactions correspond to periodic SO%ein able to enter into the nucletBAn extended model in-

lutions of these equations. However, such a macroscopic d%bporating TIM has been studiélFurthermore, the genes

scrlptlon doe; not take_ Into acc_ount the molecularclk andcycare required for the activation of theer andtim
fluctuations which become important in systems with a low o . .
number of molecules. The question arises as to whether t téanscrlptlon. The effect of the PER-TIM protein complex is

: o 4 . .hro repress theper and tim transcription by inhibiting the
sustained oscillations predicted by the macroscopic descrlpC-I_K_CYC complex activity'®19 A second feedback loop is
tion are robust with respect to the molecular noise caused bg P ’ b

the low number of molecules. This question is of fundamen- chieved by theclk activation caused by the PER-TIM

18 ;
tal importance for the biochemical reactions of the intracel—complex' In Neurospora the proteins WC-1 and WC-2

lular regulatory processésespecially for the reactions in- P'ay @ similar role as CLK and CYC: they form a complex
volved in gene expressidn® This is the case for the aPle toactivate the trar_13_cr|0|1’);ulon of tfrg gene and the FRQ
circadian rhythms of 24 hours which are observed not onlyProtein inhibits this aCt'_V_'tﬁ Updated models taking into
in pluricellular organisms such as plants, insects or verte2ccount thgsse additional  regulations are currently
brates, but also in unicellular organisms such as cyanobact@vesngate& ' . S
ria (reviewed in Refs. 6,)7 Recent work has indeed revealed ~ The core mechanism of these biological clocks can be
that circadian rhythms are controlled by biochemical clocksdescribed by a minimal model, including only three vari-
which can be observed at the level of single c®fidn this ~ ables, initially proposed for circadian rhythms in
context, a fundamental problem is to understand how th&leurospora® Here, we focus for simplicity on this minimal
molecular fluctuations affect the robustness of such biomodel for which we present theoretical methods and numeri-
chemical clocks in intracellular systems with a low numbercal simulations to quantify the effect of molecular noise on
of molecules(i.e., proteins, mRNAs..).1%"2The purpose the robustness of the oscillations.
of the present paper is to present a theoretical study of the The molecular fluctuations are taken into account by a
robustness factors in a recently proposed model of circadiahirth-and-death stochastic process describing the random
rhythms. time evolution of the biochemical clock. This stochastic pro-
In living organisms, a common origin of the circadian cess is defined by the chemical master equation of Nicolis
clocks rests on a genetic control: a clock protein exerts @nd co-worker¥~2°and it can be simulated by Gillespie’s
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transcription of its gene. This repression is characterized by

1 | the Hill coefficientn. This coefficient is determined by the
| clock gene nuclear degree of cooperativity of this reaction, i.e., the nummerf
transctription protein (Py)

molecules which have to bind together to promote the reac-

tion. The other parameters are the maximum rate of
Ve k1| lk2 mRNA degradation and the Michaelis constlptrelated to

RNA (M 8 . Vg the latter process, the apparent first-order rate constant
MANAM) ————= oytosolic  —— measuring the rate of protein synthesis which is assumed to
v protein (Pg) . )
m be proportional to the amount of mMRNA present in the cyto-

sol, the maximum ratey of protein degradation, and the

FIG. 1. Model for the molecular mechanism of circadian rhythms. The Michaelis constank related to this process, and the appar-

model incorporates the transcription of the gene involved in the biochemicaént first-order rate constants and k, characterizing the

_clock and the transport of mRN(M) into the cytosol where it'is translated transport of the protein into and out of the nucleus.

into the related clock Proteln dpr and degraded_. The protein can be de- This model as well as extended models account for cir-

graded or transported into the nucleug)®here it exerts a negative feed- . . o

back of cooperative nature on the expression of its gene. cadian sustained oscillations of clock gene mRNA and clock
protein in continuous darkness and has been used to study
several properties of circadian rhythms such a entrainement

algorithm?"? In the weak-noise limit, the chemical master py light—dark cycle and phase resetting following a light

equation reduces to a generalized Fokker-Planck equatigsulse’>*"*°In an extended model taking into account more

which can be analyzed with a Hamilton-Jacobi method. Thisjetailed mechanism of enzymatic kinetic¥ similar results

method allows us to obtain a theoretical expression for théxave been obtained as for the minimal motBl presented

probability distribution of the fluctuations of the periods, ashere.

well as for the correlation time between successive

oscillations?® This correlation time characterizes the robust-

ness of the biochemical clock under the effect of the moleculll: STOCHASTIC SIMULATIONS

lar noise. This correlation timéor half-life) is then calcu- The stochastic simulations have been carried out by

lated for the aforementioned model of circadian rhythms. Inoans of the Gillespie algorith?23 This method simulates
this way, several factors of robustness are identified and disye master equation in a relatively simple manner for set of

cussed. , _ , reactionsp=1,2,.. . r of the form
The paper is organized as follows. The model is pre-

sented in Sec. II. The stochastic simulations are described in < | i i

Sec. lll. The theory is developed in Sec. IV. The results are ;1 vepX -2 VoK 2

presented and discussed in Sec. V. Conclusions and perspec-

tives are drawn in Sec. VI. of stoichiometric coefficients!, =». —v.  and transition
ratesW,({X'}) (s being the number of species
Il. PRESENTATION OF THE MODEL Initially, the numbers of moleculeX' of the different

speciesi=1, 2,... s are specified and the transition rates

The core mechanism of circadian rhythmicity relies onw, of the reactionsp=1, 2,...r are computedhere, s
the negative regulation exerted by a clock prot@ie., FRQ =3 andr=6). A cumulative function is built by
in NeurosporaPER inDrosophilg on the transcription of its
gene (frq or per) into the messenger RNAMRNA), the
translation of which leads to the synthesis of the clock pro-
tein. The time evolution of the three variables involved in the
minimal model(Fig. 1) is governed by the following kinetic

equationés TABLE |. Transition rates of the different reaction steps entering the chemi-
cal master equatiof6). We notice that the transition rates are proportional to

P W r
c,= X —— with co=2, W,. (3
p =1 Co p=1

d[M] _ kP _ [M] the extensivity paramete. These transition rates imply the macroscopic
dt _UskP+[PN]“ Umkm+[M] ’ equationg(1), as shown in Eqg(17) and(25).
d[PC] [pc] Reaction step Transition rate Transitions
=kdM]—vgi——r57 kil Pc]+ ko[ Pyl
dt kd+ [PC] klnﬂ
GoM+G  W=vgm———r M—M+1
T P —kiPy] ) o
7~ KilFel = Kol Pl M
dt M — W2=vmm M—M-1
In these equations, the three variabJé&$], [P:], and M—Pc+M  Wo=kM Pc—Pct+1
[Py] denote, respectively, the concentratiqagfined with b B Pc P 1
respect to the total cell volumef the clock gene mRNA and ¢ Wa=vai—p 00) ce
of the cytosolic and nuclear forms of the clock protein. The Pc.—Py Wi=k;Pc Pc—Pc—1, Py—Py+1
parametervs denotes the rate of transcriptiok; is the Py— Pc Wy=koPy Pe—Pct1, Py—Py—1

threshold beyond which the nuclear protein represses the
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Then, two random numberg; andz,, are generated which and the transition rate#/, are recomputed given the new
are uniformly distributed in the unit interval. The first one chemical populations and all operations are repeated until the
serves to determine the time interval to the next reactioffinal timet,,,y is reached.
step, according to In the Gillespie method, an extensivity parameteal-
lows the control of the size of the system and hence the
At=— C_oln(zl) 4 maximum number of molecules that can be present. The ex-

_ ) ) ) tensivity parametef) relates the numbe$' of molecules to
and the second one is used to determine which reaction stgRe concentrationg' =[ X']=X//Q).

occurs during this time interval: I, ,<z,<c,, it is the
reaction stepp that takes place. The system is then update
according to

The six reaction steps of the model for the circadian
dclock illustrated in Fig. 1 and described by E¢g). are listed
in Table I. A transition rat&V, (p=1,2,...,6) is associated
t—t+At, with each of these reaction steps.

The Gillespie algorithm generates a birth-and-death sto-
chastic process which is described by the following chemical
involved in the reactionp (5) master equation

X'— X'+ for all speciesi

d
aP(MrPCvPNat):+W1(PN)P(M_laPCrPNat)_Wl(PN)P(MaPCaPN1t)+W2(M+1)P(M+11PC1PNat)

—Wyo(M)P(M,P¢c,Py,t) +W3(M)P(M,Pc—1,Py,t) —W3(M)P(M,Pc,Py,t)
+Wy(Pct+1)P(M,Pc+1,Py,t) —W4(Po)P(M,Pc,Py,t) + Ws(Pe+1)P(M, P+ 1,Py—11t)
—W5(Pc)P(M,P¢,Py,t) + We(Py+1)P(M,Pc—1,Py+ 1) —Ws(Py)P(M,Pc, Py t). (6)

This equation gives the time evolution of the probability of the clock mRNA, the cytosolic clock protein, and the
P(M,Pc,Py,t) to find M molecules of mMRNAP: cytoso-  nuclear clock protein, respectively.
lic clock proteins, andPy nuclear clock proteins. Because Thereafter, we find a solution of the generalized Fokker-
this probability depends only on the previous state of thePlanck equation in the weak-noise limit by using the
system, this description pertains to Markov processes.  Hamilton-Jacobi methodt=3* This solution is expanded
We notice that the master equati8) is here applied to around the periodic solution of the deterministic system,
a system composed of two intracellular compartments, i.egalled the limit cycle, which describes the macroscopic os-
the nucleus and the cytosol. Each compartment is supposeillations. We assume that this limit cycle does not undergo a
to be homogeneous and relatively well-stirred on the timebifurcation. Under this condition, the fluctuations around the
scale of the reactions, which are the conditions of validity oflimit cycle turn out to be of Gaussian character. Moreover,
the chemical master equatiéhWe implicitly assume that the phase of the oscillations diffuses along the limit cycle.
cellular transport processes are efficient and we take therfihis phase diffusion is the main mechanism which affects
into account in the kinetic scheme and in the parameter valthe periodicity of the oscillations in the presence of the mo-
ues. lecular fluctuation$®38The Hamilton-Jacobi method allows
us to determine quantitatively the magnitude of this phase
diffusion, as explained below. A consequence of the phase
IV. THEORY diffusion is that the time autocorrelation functions of the
chemical concentrations present oscillations which are expo-
nentially damped. An explicit formula is obtained for the
damping rate of the oscillations of the time autocorrelation
functions. The inverse of this damping rate defines the cor-
relation time of the oscillations of the biochemical clock.
In order to reach this result, we first define ttisten-

In this section, we derive a formula for the correlation
time of the noisy oscillations. We start from the chemical
master equatiori6) which we first reduce to a generalized
Fokker-Planck equation ruling the time evolution of the
chemical concentrations:

. M sive) reaction rates
x'=[M]=. @
1
w,(X)= =W, (Qx) (10
=[P = "¢, ®) e

corresponding to the sitextensive transition ratesiv,(X)
3=[Py]= N 9 (p=1_, 2,... ,6)_. Thestoichiome_tric coefficients of the six
Q reactions are given by the matrix:
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[Vi,]izl,z,s;p:l,z ..... 6 Q%=Q%=3(—ws—Wwp),
ilb 1 2 3 4 5 6 Q%=3(ws+We) (17
1/+41 -1 O 0 0 0 in terms of the reaction rat€40) defined with the transition
_ 2 0 0 +1 -1 -1 +1 ratesW, of Table I.

3\ 0 0 0 0O +1 -1 , ,
B. Hamilton-Jacobi method
) ] ] In the weak-noise limi{) — o, the generalized Fokker-
in terms of which the chemical master equati6ntakes the  pjanck equatioril4) can be solved thanks to the Hamilton-

general form Jacobi method by assuming that the probability density has

d _ r o - the fornp—3438
atPXh0= 2 W (X = hPUX =710 ) Bo(x)
P(x,t)=exg — Qpo(X,t) — P1(X,t)— Q

—W,({XHP{X},b) (12)

with i=1, 2, 3. ~ $a(x1)

0z " (18)

Substituting in the generalized Fokker-Planck equatiot),
. we obtain the following Hamilton-Jacobi equation for the
We express the population numbgi6} in terms of the  leading functioney:
concentrationsx'=X'/Q) and we introduce the probability
density 9o +hlx 9o
at T oX
P(x, 1) =Q3P(Qx,Qx%,Qx%) (13

that the concentrations take the values(x,x? x%) at the
current timet.

The chemical master equati¢h?) can then be expanded
in inverse powers of the extensivity parame€erto obtain
the Fokker-Planck equation

A. Generalized Fokker-Planck equation

=0 (19

with the special Hamiltonian

Houp)= 2 Q PPt 2, FIO0p; (20

This Hamiltonian depends on the chemical concentrations

as well as on canonically conjugated variables called mo-
S

d J . menta
ST P ==2 S [FIOOP(X.)]
ot =1 ox do
=—. (22)
1 S 2 P X
— jk
* Q j,kzzl aXIaXR[Q] (X)Px.1)] 149 Near the thermodynamic equilibrium, the functigg would

) s ) . be interpreted as minus the excess entrdfyof the molecu-
if the terms of order()™“ and higher are neglected. This |5 fiyctuations with respect to the state defined by the con-
approximation is justified if the limit cycle does not undergo centrationsx bo=—AS, if the extensive parameter is re-

a bifurcation. In Eq(14), we have introduced the mean drifts placed with the Boltzmann constait=kg.. In this case, the

of the concentrations momenta could be identified as minus the thermodynamic
r forces:
Fi(x) ,)Zl vhw, (%) (15) ok S N
Pi=—7= . (22

and the matrix of diffusivity
1 In the weak-noise limit, the methods of Hamiltonian me-
Qik(x) = _2 Y (X) (16) chanics can thus be used to determine the solution of the
2 &~ Tptp e . . . -
p=1 generalized Fokker-Planck equation. This solution can be ex-

This diffusivity matrix is symmetric and non-negative. For Pressed in terms of the action
the system defined in Table I, these quantities are given by
¢o(x.t)=f p-dx—H dt, (23

where the time integral is carried out over the trajectories of
Hamilton’s equations:

1_
Fr=w;—w,,

2_
Fe=w3z—w,;—Ws+Wg,

F3:W5_W6, S

( JH [ ij
QU= L (w,+w,), x:+a—pi:F(x)+2jZlQ (X)p;,
Q¥=Q*=Q"=Q%=0, . H i IFI(x) 25 IQ*(x) 24
Q??=3(W3+W,+Ws+Wg), PETN T T E P ) PP
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We notice that the Hamilton equatiof®4) preserve the Since the generalized Fokker-Planck equatib$) is in-
subspace of vanishing momenm@m=0. In this subspace, dependent of time, the Hamiltonid80) does not depend on
Hamilton’s equations reduce to the equations of macroscopitme so that Hamilton’s equation®4) preserve a pseudo-

chemical kinetics: energy
o T E=H(x,p). (34
K=Fl(x)=2, viw,(x) in p=0 (25) : i ' i
p=1 " According to Eq(18), the quantitys, has the physical units

of the inverse of the extensivity parameferwhereupon we
infer from Eq.(23) that the pseudo-energy has the units of a
rate (second?) divided by the units of the extensivity pa-
rameter().

The action(23) can be expanded in a Taylor series
around a poink, of the macroscopic limit cycle and around
some repetition T of the prime periodr to get:

1 P (X, ,rT)

so that we here recover the macroscopic equati@hsac-
cording to the three first equations of EG.7) and the tran-
sition rates of Table I.

For a biochemical clock, the macroscopic systéth)
admits a limit cycle or periodic attractor, which is a stable
periodic solution of some prime peridd The prime period
T is the smallest nontrivial number such that

X(t+rT)=x(t) for r=...,-2-1,04+1,+2,... .(26) bo(X, )=+ ET(t_rT)z
The stability of the limit cycle is characterized by linearizing 1 P (X, ,rT) _ 5
the macroscopic equatiorigs) L e R € S (39
i i IF'(x) [ neglecting higher-order terms. The terms of zeroth and first
28 _1:1 ax! ox in p=0. (27 orders(as well as the cross term of second-ojdean be

_ _ _ o _ ~ shown to vanish because the limit cycle belongs to the in-
Since this system of equations is linear its general solutioRygriant subspacp=0 at vanishing pseudo-ener§y=0 (see
can be expressed in terms o6& s matrix as elsewher®). The second derivative of the action with re-

Sx(t)=M(t)- 6x(0) such asM(0)=I. (29) spect to the time at some poirtx, can be showt? to be

related to the derivative of the period with respect to the
At the prime period =T, this matrix admits the eigenvalues pseudo-energy according to

A} and associated right- and left-eigenvectors according to
e ’ ’ I Rgx T 1

M(T)- &= Aye, It2 = TaTl (36)
M(T)T-f= Afy. (29 "I5E

The right- and left-eigenvectors satisfy the biorthonormalityThe sign can also be shown to be positi?e.

relations Accordingly, the probability density around some point
6 fi= 5. (30) X, of the limit cycle is given by

The eigenvalue corresponding to the direction of the flow is p(xit)NeXF{ - L(t— rT)2
always equal to unity: 2r| T

A=1, for e=%=F(x,) (32 _a P po( X ,IT)

5 (X x,)? 37

if X, is a point chosen on the limit cycle. Since the limit

cycle is supposed to be stable all the other eigenvalues sdt the weak-noise limi€)—ce. In this limit, the probability

isfy the condition:|A,|<1 for k#1. The corresponding density is thus of Gaussian character not only in the space of

Lyapunov exponents are defined by chemical concentrations but also in time around each rep-
etition r T of the prime period.

1

For a stable limit cycle, the Lyapunov exponents are ordere¢t. phase diffusion and consequences

ash;=0>N\,=\3. The dissipative character of the macro- _ . . e

scopic systen(25) manifests itself in the property that the As t|me increases, the probabl_llty d|s_tr|but|on_of the
time average of the divergence of the macroscopic systerﬂhase drifts and spreads along the time axis according to the

(25—or equivalently the sum of Lyapunov exponents—is °OWing mean and variance:
negative: (t)y=rT, (39

A r
t'flT fo dwFothk A<O, (33 ((t—rT)2>=5|ﬁET|. (39)

where the integral is performed over a trajectorypir0  We observe that the variance increases linearly with the rep-
which converges toward the limit cycfa. etition numbenr of the prime period, as expected for a pro-
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FIG. 2. Circadian oscillations given by the negative feedback model schematized in fagOkcillations of MRNA M) and cytosolic clock proteinK()

obtained, in the absence of noise, by numerical integration of the three deterministic kinetic eqUatgmeerning the time evolution of the model. The

period is about 22h. The oscillations Bf, are similar to those oP. and are not shownb) Corresponding oscillations generated by the model, in the
presence of noise, fd2 =100 andh=4. The data, expressed in numbers of molecules of MRMA&nd of cytosolic proteinR), are obtained by stochastic
simulations using the Gillespie algorithitt) Limit cycles represented as a projection into thé, P) plane, corresponding to the determinigtiold curve

and noisy(thin curves oscillations. In this panel, the deterministic concentrations have been scaled to correspond to the number of molecules by multiplying
the variables by)=100. The other parameter values are=0.5 nMh™%, k,=2.0 nM, v,,=0.3 nMh %, k;,=0.2 nM, ke=2.0 h'%, v4=1.5 nMh %, k4

=0.1nM, k;=02h? k,=02h1.

cess of phase diffusion in the direction longitudinal to the i i
limit cycle. The temporal diffusivity of the phase has the C(t):f XP(X,t;X0) X dx dXo. (44)
value
5 According to Eq.(37), such a probability density has a
lim ((t—rT) >: | 9T (40) Gaussian dependence on time near each repetilioof the
e (t) o1’ prime period in the weak-noise limit. As time increases the

o _ _ . probability density in Eq(44) is therefore composed of a
As expected, the phase diffusion disappears in the noiseleg$m of Gaussian pulses. By the method of Laplace trans-

limit () =ce. ) S _ ) forms, such a function can be shot¥rio present damped
If we defined the distribution of first-return times at a gggijjjations of the form

given value of a particular concentratiah Eq. (37) would

suggest that the recurrences of the noisy clock are distributed t

randomly around the prime peridtl of the noiseless limit C(t):COHCl'eXF{ - 7-) cogwttay) (t—=) (49
cycle. Indeed, according to E¢37) with r =1, the distribu-

tion of the times of first return should be given by the GaussWith some coefficient€,, [C,| and a phaser;, which de-
ian pend on the particular concentration entering the definition

of the autocorrelation functiof3).2° However, the pulsation

1 (t—T)2 w and the correlation time are independent of the particular
P(t)= > \/ﬂex T T2 (4D concentration and are given 4y
in the limit Q—o. If the effects of the fluctuations trans- _ 2_77
. . w=—", (46)
verse to the limit cycle are neglected, the standard deviation T
of the distribution(41) is approximately given b
. (41) is app yg y 2m( - )2 w
IeT = 2
U~%T for Q—soo. (42) |0eT|\ 2

o ) ~ We introduce the half-life of the autocorrelation function as
Furthermore, the phase diffusion directly affects the timethe time when the exponential enveloppe of the autocorrela-
autocorrelation functions of the chemical concentrations: tjgn function(43) has decreased by 50%. Therefore, the half-
C(t)E<Xi(t)Xi(o)>_ (43) life of the oscillations of the autocorrelation function is re-

lated to the correlation time by
Such time autocorrelation functions can be expressed in

terms of the solution of the generalized Fokker-Planck equa- _ _ Q1In2
tion (14) from some initial probability densitPy(x,) as V2=

(48)
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with the coefficient
| oeT] ( 27 ) 2

N=Zl xi>90(21 xi> (52)

max

2T \ T (49)

We observe that the half-life48) increases proportionally to with Q given by Eq.(50). The minimum total number of

the size() of the §yst.em: the larger the system, the moremolecules(SZ) depends on the characteristic quantities of the
correlated the oscillations are. We also notice that the half

[imit cycle as well as on the diffusivity matrix16) which
life depends on the derivative of the period with respect to y 4 116)

o ) , enters in the expression 6, given by Eq.(50) because the
t_he pseudo-energia4) of the Har_“"m’?'a“zo)- This d_enva- pseudo-energi depends on the diffusivity by Eq&0) and
tive can be calculated as explained in the Appendix.

Th lation tima4 i fimati f th (34). On the other hand, the prime periddand the maxi-
__'he correlation Ime(47) provi €s an estimation ol tN€ -~y of the sum of concentrations depend only on the mean
minimum number of molecules required in the system for th

i ¢ . lated in ti th rifts F(x) of the macroscopic kinetic equatio(5).
oscilialions 10 remain correiated in time over more than one \ye shoid here remark that the biochemical oscillations

prime period. Indeed, the autocorrelation function still Pré-..n still be observable fof)< ), below the critical value

sents :_sl_detectable recurrence as Iongulasl, Le., if .the (50). However, the recurrender first-return times are then
extensivity parameter is larger than a critical value given byWidely distributed in time with a standard deviatiga2)

| dgT| larger than the period:
0O>Q0=—5 (50
T
Since the number of molecules of speciéssXX'=Qx' the _ QO
maximum total number of molecules during one period of o>T if Q<?- (53
the oscillations is
S
Nmax:Q( 2 X') : (5D v, RESULTS AND DISCUSSION
max

Therefore, in order for the oscillations to remain correlated,  In this section, we present the results of the simulation of
the total number of molecules which are present in the systhe biochemical clock with Gillespie algorithm and we com-
tem should be larger than the critical value pare with the predictions of the theory exposed in Sec. IV.
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FIG. 4. Time evolution of the autocor-
relation function for different values of

1
—_

1
-

0 50 100 150 200 250 300 0 50 100 150 200 250 300 the extensivity parametef) corre-
Time (h) Time (h) sponding to oscillations shown in Fig.
1 3. When () is decreased, the loss of
1 0=10 correlations, which corresponds to the
Q=50 - damping of the correlation function, is
more rapid. The other parameter val-
8 0.5 S 05 ues are as in Figs. 2 and 3.
© ©
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-1 | | ! ! | -1 \ \ I I \
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (h) Time (h)
A. Comparison between deterministic and stochastic B. Half-life of the autocorrelation functions
oscillations

The effect of the molecular noise on the robustness of

For a given set of parameters values, the numerical intethe oscillations can be characterized by the autocorrelation
gration of the deterministic kinetic equatiorfq) of the  functions depicted in Fig. 4. Whefd =500, the autocorrela-
model presents sustained oscillations corresponding to #on function presents oscillations which are slowly damped.
limit cycle with a period of about 22fFig. 2(@)]. Similar  In this case, the system would keep its periodicity during
oscillations are obtained by stochastic simulations of theseveral days: The half-life of the correlation is about 440h
model using the Gillespie method explained in Sec[fib.  (i.e., 20 days If () is decreased, we observe that the damp-
2(b)]. These figures show that the stochastic oscillationsng of the correlation function becomes more pronounced.
present fluctuations around the deterministic limit cycle. TheConsequently, when the number of molecules present in the
amplitude of these fluctuations depends on the number afystem is lowered, the effect of the fluctuations is higher on
molecules present in the system. In the phase space, theg® periodicity of the system. Fd2 =100, the half-life of
fluctuations correspond to a set of trajectories around theéne correlation is about 100f.e., 4 day$, at Q=50 the
deterministic limit cycle[Fig. 2(c)]. If the number of mol-  half-life is only about 48h, and a® =10, correlations are
ecules in the system is too low the fluctuations take over theapidly lost in less than a period of the oscillations. This loss
regular oscillations and the system loses its periodicity.  of correlation is mainly due to the diffusion of the phd&e®

In the Gillespie method, the extensivity paramefer We emphasize that, in agreement with the theoretical
controls the total number of molecules that can be present idiscussion in Sec. 1V, the noisy system still presents rela-
the system. For values @& of the order of 500, the trajec- tively well-defined oscillation§Fig. 2(b), with Q= 100] with
tories in the phase space are densely packed around the demean period very close to the deterministic period. Never-
terministic limit cycle(Fig. 3, with)=500. Upon decreas- theless, the memory of the initial conditions and, especially,
ing Q (i.e., when lowering number of molecu)esthne of the phase, is progressively lost as time increases because
trajectories expand and explore a larger area of the phass phase diffusion. The lower is the number of molecules
space. The dispersion of the trajectories in the phase spacepsesent in the system, the more rapid is the loss of the initial
not homogeneous but depends on the characteristics of tlwwndition memory.
limit cycle. The phase portraits show regions of contraction  As explained in Sec. IV, we expect a linear relationship
and others of expansion of phase-space volu(Ris 3). At between() and the half-life of the autocorrelation function
very low values ofQ) (of the order of 1Qthe structure of the according to Eq(48). The values of the quantities entering
limit cycle is nearly completely lost and the system producesnto the coefficient(49) are given in Table Il. On the other
widely irregular oscillationgFig. 3, with )= 10). hand, we have computed the half-life for varying value$of
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TABLE Il. Numerical values for the period, the derivativedT/JE, and the Lyapunov exponenits; , A, ,\3}
vs the Hill coefficientn for the model of Table | with the parameters;=0.5 nM i, k,=2.0 nM, v,
=0.3nMh %, k,=0.2 1M, ke=2.0 "%, vg=1.5 nMh %, ky=0.1 nM, k;=0.2 "%, k,=0.2 h™ L. The unit
of time is the hour(h).

n T JTIE A Ay s
1.0 30.926 -2107.3 0.0 ~0.020 ~0.532
15 27.077 —-751.8 0.0 -0.074 —0.662
2.0 25.029 -537.3 0.0 -0.118 ~0.806
2.5 23.774 —460.7 0.0 —0.160 -0.925
3.0 22.945 —430.0 0.0 -0.198 -1.018
3.5 22.372 —417.2 0.0 -0.231 —1.090
40 21.962 —4126 0.0 -0.261 —1.147
45 21.661 —412.8 0.0 —0.286 —1.191
5.0 21.435 —414.2 0.0 -0.309 —-1.226
55 21.261 —416.8 0.0 -0.328 —1.253
6.0 21.124 —420.4 0.0 —0.346 —-1.275
6.5 21.016 —4216 0.0 -0.361 —-1.292
7.0 20.927 —424.0 0.0 -0.374 —1.306
75 20.854 4257 0.0 -0.387 —-1.317
8.0 20.792 —427.3 0.0 -0.397 ~1.326

by stochastic simulation. Figure 5 shows the perfect agreerapidly increases as the Hill coefficient increase from1
ment between the simulations and the theoretical predictioto n=2. A maximum is reached betweer2 andn= 3. The
(48) with the coefficient(49). Indeed, by linear regression, half-life then decreases to a moderately high value for higher

we find valuesn>3 of the Hill coefficient. This behavior, which is
explained here below, has also been observed for more de-
T12_ 4504110 (54) tailed models of circadian rhythm$.Accordingly, for a
T given value of(2, the limit cycle is more robust with respect
in the case of the Hill coefficiem=4, which is in excellent to the molecular noise when the system has a Hill coefficient
agreement with the theoretical value of larger tham= 1. The cooperativity of the inhibition is thus a
factor that allows the systems to resist to the molecular noise.
12 _ 6041 050 (55) Several factors explain the increase of the correlation
T time of the biochemical clock in the presence of cooperativ-

according to the formul#49). ity. When the Hill coefficient takes the unit value=1 the

We have also studied the influence of the Hill coeffi- limit cycle is of harmonic type and located in the middle of

cient, n, on the robustness of the oscillations. Figure 6 defh€ phase spacgrig. 7(a)]. In contrast, the anharmonicity
picts the behavior of the half-life for a system with  @nd the stiffness of the limit cycle increases with the Hill

=100 as a function of the Hill coefficiem, i.e., of the Coefficient. The limit cycle then becomes of relaxation type

degree of cooperativity of the inhibition in the production of
the clock mRNA. We observe in Fig. 6 that the half-life

5
7,,=0.0411 Q 8 4L
'8 2oL R=0.99981 o |
= Q_
2 | g 3
= H—
9 < T
= 10} < 2
= I
- i L
1 | | | | | | | |
0 | | ‘ ‘ ‘ 1 2 383 4 5 6 7 8
0 100 200 300 400 500 Hill coefficient, n

Q
FIG. 6. Half-life of autocorrelations vs the degree of cooperativity charac-
FIG. 5. The half-life of the autocorrelation function vs the extensivity pa- terized by the Hill coefficienn for =100. The solid line corresponds to
rameter(} in the case of the Hill coefficiem=4. The black points are the the theoretical curve given by Eq&8) and (49). The black points are the
averages measured on 20 simulations, each over 50 000 tieursabout averages measured on 20 simulations, each over 50 000 ticursabout
2200 periods and vertical bars are standard deviations with a confidence2200 periods and vertical bars are standard deviations with a confidence

interval of 95%. The dependence is linear as predicted byZ8j). A linear interval of 95%. The parameter values are the same as in Fig. 2. The maxi-
regression gives a slope of 0.04@blid line) with a correlation coefficient ~mum results from the combined effect of the decrease of the plsésdFig.
R=0.999 81. 7(b)] and the increase ofc T (see Fig. 8 asn increasegsee text
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(a) (b)
o7 32

o 6 30 FIG. 7. (a) Phase portrait of the limit cycle of the mac-
c M roscopic system for varying values of the Hill coeffi-
© 5 E 28| cientn. (b) Period of the oscillations vs the degree of
° 4 ~ cooperativity given by Hill's coefficientn for Q
E. '8 26 =100. The black points are the means of the period
o 3 = measured on 20 simulations each of about 2200 periods
= O 24_ (as in Fig. 6. The solid line corresponds to the values
8 2 o of the period calculated by integrating the deterministic
O 1 22 kinetic equations. The parameter values are the same as
= in Fig. 2.
Ao o RN B 2001 0 1o

0 04 08 1.2 1.6 12 3 456 7 8

mRNA, M Hill coefficient, n

and part of it evolves at low concentrations near the axes afentered around the deterministic period. The standard devia-
the phase spadé-ig. 7(a)]. Moreover, Fig. ) shows that tion o is depicted in Fig. &) and we find by linear regres-
the period of the limit cycle varies more rapidly for=1 sion that

than for higher values of Hill's coefficient, which is a further 20.1
evidence of the fragile character of the oscillations when ;= W” (56)
n=1.

According to Eq.(49), the main parameter which con- which is in good agreement with the theoretical value pre-
trols the half-life of the autocorrelation function is the de- dicted by Eq.(42)
rivative dg T of the period with respect to the pseudo-energy.
This quantity is plotted as a function of the Hill coefficient in o= Qg (57)
Fig. 8. We observe in this figure that this quantity increases Q
very much betweem=1 and n=2, reaches an unpro- jj the casen=4 (cf. Table II).
nounced maximum near=4, and tends to a nearly constant  These results confirm that the oscillations may be
value at higher values af when the limit cycle becomes of gephased by the phase diffusion but that they remain sus-
relaxation type. Equationgl8) and (49) show that the half-  tained even in the presence of molecular fluctuations. The
life behaves asy,~ O T?/|3¢T|. Accordingly, the maximum  first return times are better and better centered on the deter-
of the half-life arounch=3 observed in Fig. 6 results from yinistic period as the system becomes macroscopic.
the combined effect of the rapid increasedeil betweenn
=1 andn=2 (Fig. 8) and of the slow decrease of the period
T which persists fom>3 [Fig. 7(b)]. We notice that the
maximum of the half-life occurs whe# r,,,=0, i.e., where We have also observed that the Lyapunov exponents of
390 TIT=3d,|9eT|/|9eT|, which explains that the maximum the limit cycle become more negative for increasing values
of 7/, does not coincide with the maximum 6T where  of the Hill coefficientn. Hence, the limit cycle attracts more
dn|dT|=0. strongly the trajectories when the Hill coefficient is higher

(Fig. 10. As a consequence, the contractivity of phase-space

D. Effect of the attractivity of the limit cycle

C. Distribution of the first-return times

Even in the presence of noise, we see in Fidp) Zhat 0
the oscillations of the biochemical clock repeat themselves in
spite of the decay of the autocorrelation function depicted in
Fig. 4. Indeed, the autocorrelation functions measure the cor- -500 -
relation between an event at a given timgand another
event at a later timé,+t. The phase diffusion tends to de- yy -1000 oo
stroy these correlations, but the oscillations remain. Accord- ® -4201-
ingly, it is interesting to study a further quantity that would rl_c -1500 as0L
describe the repetitive and sustained character of the noisy =
oscillations. Such a quantity is the probability distribution of -2000 480
the times of first return of one of the concentratiofos 480l
equivalently one of the numbers of moleculesits average 2500l L
value. The theory of Sec. IV predicts that this distribution 1 2 3 456 7 8

should be Gaussian of the for@1) with an average close to
the deterministic periogk=~T and a standard deviation given
by E‘?' (42) in the We_zak-n0|se I!m|(2—>00. . FIG. 8. DerivativedT/JE of the period of the oscillations with respect to
_ F|gure_ 9a) depicts the h|sto_gra_m _Of the f'r_St'retum the pseudo-energy vs the Hill coefficientn. The parameter values are the
times, which shows that the distribution remains well-same as in Fig. 2.

Hill coefficient, n
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(a) (b)
25 3
n=22.1h = slope = 20.1
= 200 o=1.99h Q825 R=0.9995 FIG. 9. (a) Histogram of the times of first return of the
2\_, ®© numberM of mRNA to its average value, in the case
> 150 5 2L n=4 and(Q=100. The histogram is obtained from one
8 © simulation over 50 000 houkge., about 2200 periogls
‘D T N (b) Standard deviation of these first-return times vs
3 101 = 1.5 . ;
o3 © Q in the casen=4. The black points are the aver-
o -g ages measured on 20 simulations, each over 50 000
w 5 S 1k 9 ,
4+ hours.
(5}
Olieit, Fpvau Loy 0.5 ! ! !
0 10 20 30 40 50 0.04 0.08 0.12 0.16
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volumes[which is characterized by the divergence of thecreases with the Hill coefficient together with the general
macroscopic equations according to E8@)] also increases increase of the correlation tim@r half-life) of the oscilla-
with n. tions. We can here conclude that the cooperativity tends to
This divergence is the main factor influencing the disper-ncrease the attractivity of the limit cycle, which also con-
sion of the trajectories around the limit cyclgFigs. tributes to the robustness of the oscillations.
11(c),11(d)]. The contraction of nearby trajectories is maxi-
mal when the divergence of the flow near the limit cycle is
minimal. Around the minimum of divergence the trajectories
are compressed in the phase space. Figufe) Ehows the In this paper, we have studied the influence of molecular
divergence along the limit cycle during one period. Figurefluctuations on biochemical clocks and, in particular, on cir-
11(d) shows the limit cycle in the phase space plake () cadian rhythms. Since these biochemical clocks take place
on which the values of the divergence have been reportednside a single cell, the low number of molecules involved at
The minimum of divergence {9.54) corresponds to the the subcellular level has the consequence that the molecular
lower left corner of the I1,Pc) plane where most of the fluctuations can play a significant role. In order to address
contraction of the trajectories occufsig. 3). It corresponds this question we have here studied the effect of these fluc-
to a low number of molecules present in the system. Theuations on a simple model of the circadian rhythm.
divergence is minimal at the minima of mRNAV() and In the presence of molecular fluctuations, the time evo-
cytosolic protein Pc) number of molecule§Fig. 11(a) and  lution of the chemical populations obeys a stochastic process
Figs. 3a)—3(d)]. Figure 12 depicts the divergence and thewhich we have modeled as a birth-and-death process de-
speed versus the Hill coefficient scribed by the chemical master equation by Nicolis and
We observe in Fig. 3 and Fig. 11 that the spreading ofo-workers?*~2® The reactions are supposed to take place
the trajectories occurs when the chemical reactions of theomogeneously within each of the two intracellular compart-
biological clock are producing molecules. ments of the model, namely, the nucleus and the cytosol.
We also notice that the speed along the limit cycle pre-This process has been simulated by an algorithm proposed
sents its minimum when the divergence is minimal. It pre-by Gillespie?’?® Because of the molecular noise, the chemi-
sents a second local minimum corresponding to the maxieal concentrations are randomly distributed around the limit
mum reached by the nuclear proteins during the oscillationsycle of the corresponding macroscopic system. Moreover,
The speed along the limit cycle is thus maximal when the
system is producing or destroying molecules, i.e. when the

VI. CONCLUSIONS AND PERSPECTIVES

number of molecules is rapidly rising or decreasing. The 8L 9

variation of speed along the limit cycle is correlated to the GCJ \\\*’*‘v
phase relationship between the variables. First, the number c

of MRNA molecules is slowly rising due to the absence of 8_ 05

repression. The mRNA molecules induce the rapid synthesis < "

of cytosolic proteins which are progressively transported into @

the nucleus where they exert their repression activity. Sec- 8 1

ond, the speed reaches its maximum and starts to decrease c B

because the number of nuclear proteins is at its maximum 8_

repressing the transcription and hence the proteins synthesis. ]

Third, the speed rise again while the system is rapidly de- Setsl L LI 1|

. ) . 1 2 3 45 6 7 8
grading the cytosolic and nuclear proteins. ) L.

However, the speed does not play the main role in the Hill coefficient, n
sprea}dlng of the trajectories, WhI.Ch IS mfmnly determined byFIG. 10. Lyapunov exponents;=0>\,>\3 vs the Hill coefficientn.
the divergence of the macroscopic equations and therefore B\ese points have been calculated by Ep) with the same parameter
the local attractivity of the limit cycle. This attractivity in- values as in Fig. 2.

Downloaded 19 Jun 2002 to 164.15.129.89. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



11008  J. Chem. Phys., Vol. 116, No. 24, 22 June 2002 Gonze, Halloy, and Gaspard

a
(@
6L
=z
o 5.
o
o 4
E“ 3
2
1
0
20
(c)
FIG. 11. (@) Deterministic oscillations for the three
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q‘:, the corresponding limit cyclgpanel(b)]. Time 0 is de-
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the noise induces a phase diffusion, which causes a loss @fhich is the derivative of the period of the oscillations with
correlation between the successive oscillations which neverespect to the pseudo-enerdy of the Hamilton-Jacobi
theless continue to be sustain@d>® The loss of correlation method[cf. Egs.(42) and(48)—(49)]. Our results lead to the
reduces the robustness of the biochemical clock. As a vehiclgeneral prediction that the smaller the quantityT| is the

of our study we have here considered the minimal mé¢tlel greater the robustness of the oscillator is. Besides, we notice
but we should mention that stochastic simulations of exthat the quantitydgT| takes values which are specific to the
tended versions of this model lead to similar restfit<. kinetic scheme and the parameter values of the model under

The robustness of the oscillations can been characterizestudy. For the kinetic schem@), we have here shown that
by different methods: phase portraits, autocorrelation functhe quantity|dgT| decreases significantly in the presence of
tions, probability distribution of first-return times, global and cooperativity in the inhibition of the production of clock
local stability analyses. First of all, we have computed themRNA by the nuclear clock protein. The theoretical predic-
autocorrelation functions, which measure the statistical cortions have been found to be in excellent agreement with the
relation between successive oscillations. Our simulationsumerical simulation based on Gillespie’s method.
show that such autocorrelation functions present oscillations These results show that the half-life very much depends
which are exponentially damped. The damping rate of then the nonlinearity of the biochemical oscillator and, espe-
exponential envelope of the autocorrelation function definegially, on the Hill coefficient which characterizes the coop-
a half-life or time of correlation between successive oscilla-erativity. Without cooperativity, the limit cycle appears to be
tions. This half-life is directly determined by the phase dif- fragile with a highly variable period and a low attractivity.
fusion and we have been able to obtain a precise and quakith cooperativity, the nonlinearity and the stiffness of the
titative theoretical prediction for the half-life of the kinetics increases and the limit cycle becomes of relaxation
autocorrelation function. type.

With the Hamilton-Jacobi method, we have inferred that  Relaxation-type limit cycles turn out to be much less
the half-life of the autocorrelation functions, as well as thesensitive to molecular noise and to be much more attractive,
inverse of the variance of the probability distribution of first- as evidenced by the behavior of the quanitityT| and of the
return times, are inversely proportional to the quartityT| Lyapunov exponents. A local analysis of the stability and, in
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(a) organization appears as a possible emerging property beyond

0 — a critical minimum size. Self-organization below such a criti-

-2 cal size is nevertheless possible in the form of equilibrium
© 4 structures by mechanisms such as the self-assembly of su-
e 8 pramolecular structures, which can be involved in nonequi-
% librium functions as in the case of molecular motors.
§ 8 Another important aspect is the robustness of the bio-
a-10 chemical clocks under an external periodic forcing. The

study of Ref. 30 has shown that a periodic forcing can induce
a phase locking of the clock by the external signal. The sen-
sitivity of this phase locking with respect to the molecular
noise can be quantitatively studied by methods similar to the
ones developed in the present wotk.

In conclusion, we have here developed quantitative
methods which allow us to address the question of the ro-
bustness of biochemical clocks under the influence of the
molecular noise. We think that these methods can be applied
to further systems and will contribute to clarify the role of
molecular noise in circadian rhythms and other chemical or
biochemical clocks.

L 4
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Here, we should mention that the sensitivity to molecu-

lar noise is enhanced when the kinetic parameters are closgpeNDIX: METHOD OF CALCULATION OF 9T/ JE

to a point of Hopf bifurcation. Indeed, the Hopf bifurcation

is known to be the origin of the oscillations and a limit cycle ~ The derivativedT/JE can be calculated by linearizing

weakens its attractivity in the vicinity of a Hopf Hamilton's equationg24) around the limit cycle in the in-

bifurcation?>3° Accordingly, the robustness of the oscilla- variant subspacp=0:

tions would be affected near a Hopf bifurcation as it has been F

shown by numerical simulations done with extended ver-  dx=—-dx+2Q- dp,

. . dx

sions of the core model presented h&rén this regard, we

point out that the present results are obtained for parameter Sh= — 07_FT s Al

values far from the Hopf bifurcation points. Since, for the P= X P (A1)

e e o e 1 ot £ (), andQ=(QM

' Outside the invariant subspape=0, we expect that the

ngs?ésgzggeii getfhelg ?)rr?r;]?teelgt\é?jlii?elgs d'?/(:el(rs?;rrlogfuﬂ%]nit cycle extends into another periodic solution of slightly
' ifted periodT + ST such that

present core model may be due, as shown in Ref. 11, 3

smaller values of some parameters that bring the system very x(T+ 6T)=x(0),

close to the Hopf bifurcation point. p(T+6T)=p(0)

Our results also show that a biochemical clock requires a

- , o . at the pseudo-energy
minimum number of molecules involved in its reacting net-

work in order to be able to keep the time and act as a clock SE=H=F[x(0)]- p(0). (A3)

[cf. Eq. (52)]. This conclusion is of particular importance in The perturbations with respect to the limit cycleir 0 are
our understanding of self-organization in biological SyStems§y o efore given by the coupled equations
because it gives a fundamental limit to the proper function-

ing of regulatory reaction networks under nonequilibrium OX(T)+X(T)8T=6x(0)
conditions. In this perspective, nonequilibrium self- op(T)+p(T)ST=6p(0)

(A2)

(A4)
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with X(T)=X(0)=F[x(0)] andp(T)=p(0)=0 for the limit
cycle inp=0. The solution of the linearized equatiof#sl)
are given by

OX(T)=M(T)- 6x(0)+N(T)- op(0)
Sp(T)=M(T) "% T- 5p(0) ' (A5)
whereM(T) is the matrix introduced in Eq28) while

N(T)=2M(T)- fOTM(T)—l-Q[x(T)].M(T)—l Tdr.
(A6)

The initial perturbations on the limit cycle can be ex-
panded in the bases of the right- and left-eigenvec@®sof
the matrixM(T) as

5x(0)=; S&e, and 5p(0)=§k‘, Smif. (A7)

Since the eigenvectors are bhiorthonormal &pe F[x(0)],
we obtain from Eq(A3) that 7, = SE. By the second lines
of Egs.(A4) and (A5), we moreover get thaém, =0 if A
# 1. Similarly, the first lines of Eq9A4) and (A5) give an
equation fordT and 6¢,. Taking the scalar product with
and using the biorthonormalit§80), we obtainsT in terms
of 6E and thus

oT  f1-N(T)-f,

E- T fe (A8)
This expression can be rewritten as

aT fi- 6X(T)

[7_E - fl i el ] (Ag)

where 6X(T)=N(T)-f; is solution of the linearized system
(A1) from the special initial conditionssX(0)=0 and
op(0)=f, [see Eq(A5)].
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