
JOURNAL OF CHEMICAL PHYSICS VOLUME 116, NUMBER 24 22 JUNE 2002
Biochemical clocks and molecular noise: Theoretical study
of robustness factors
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We report a study of the influence of molecular fluctuations on a limit-cycle model of circadian
rhythms based on the regulatory network of a gene involved in a biochemical clock. The molecular
fluctuations may become important because of the low number of molecules involved in such
genetic regulatory networks at the subcellular level. The molecular fluctuations are described by a
birth-and-death stochastic process ruled by the chemical master equation of Nicolis and co-workers
and simulated by Gillespie’s algorithm. The robustness of the oscillations is characterized, in
particular, by the probability distribution of the first-return times and the autocorrelation functions
of the noisy oscillations. The half-life of the autocorrelation functions is studied as a function of the
size of the system which controls the magnitude of the molecular fluctuations and of the degree of
cooperativity of some reaction steps of the biochemical clock. The role of the attractivity of the limit
cycle is also discussed. ©2002 American Institute of Physics.@DOI: 10.1063/1.1475765#
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I. INTRODUCTION

When driven far from the thermodynamic equilibrium
chemical or biochemical reactions may generate oscillatio
In macroscopic systems, such reactions are described
nonlinear differential equations ruling the time evolution
the chemical concentrations according to the laws of che
cal kinetics. Oscillating reactions correspond to periodic
lutions of these equations. However, such a macroscopic
scription does not take into account the molecu
fluctuations which become important in systems with a l
number of molecules. The question arises as to whether
sustained oscillations predicted by the macroscopic desc
tion are robust with respect to the molecular noise cause
the low number of molecules. This question is of fundam
tal importance for the biochemical reactions of the intrac
lular regulatory processes,1 especially for the reactions in
volved in gene expression.2–5 This is the case for the
circadian rhythms of 24 hours which are observed not o
in pluricellular organisms such as plants, insects or ve
brates, but also in unicellular organisms such as cyanoba
ria ~reviewed in Refs. 6, 7!. Recent work has indeed reveale
that circadian rhythms are controlled by biochemical cloc
which can be observed at the level of single cells.8,9 In this
context, a fundamental problem is to understand how
molecular fluctuations affect the robustness of such b
chemical clocks in intracellular systems with a low numb
of molecules~i.e., proteins, mRNAs, . . .!.10–12 The purpose
of the present paper is to present a theoretical study of
robustness factors in a recently proposed model of circa
rhythms.

In living organisms, a common origin of the circadia
clocks rests on a genetic control: a clock protein exert
10990021-9606/2002/116(24)/10997/14/$19.00
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repression on the transcription of its own gene.6,7 Models for
biological clocks based on this negative regulation have b
proposed for the PER protein in the flyDrosophila13,14 and
for the FRQ protein in the fungusNeurospora.15 However,
several other genes involved in this mechanism have b
identified such as, inDrosophila, thetim gene responsible fo
the TIM protein which forms a complex with the PER pr
tein able to enter into the nucleus.16 An extended model in-
coporating TIM has been studied.17 Furthermore, the gene
clk andcycare required for the activation of theper andtim
transcription. The effect of the PER-TIM protein complex
to repress theper and tim transcription by inhibiting the
CLK-CYC complex activity.18,19 A second feedback loop is
achieved by theclk activation caused by the PER-TIM
complex.18 In Neurospora, the proteins WC-1 and WC-2
play a similar role as CLK and CYC: they form a comple
able to activate the transcription of thefrq gene and the FRQ
protein inhibits this activity.20,21 Updated models taking into
account these additional regulations are curren
investigated.22,23

The core mechanism of these biological clocks can
described by a minimal model, including only three va
ables, initially proposed for circadian rhythms
Neurospora.15 Here, we focus for simplicity on this minima
model for which we present theoretical methods and num
cal simulations to quantify the effect of molecular noise
the robustness of the oscillations.

The molecular fluctuations are taken into account b
birth-and-death stochastic process describing the ran
time evolution of the biochemical clock. This stochastic pr
cess is defined by the chemical master equation of Nic
and co-workers24–26 and it can be simulated by Gillespie
7 © 2002 American Institute of Physics
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algorithm.27,28 In the weak-noise limit, the chemical mast
equation reduces to a generalized Fokker-Planck equa
which can be analyzed with a Hamilton-Jacobi method. T
method allows us to obtain a theoretical expression for
probability distribution of the fluctuations of the periods,
well as for the correlation time between success
oscillations.29 This correlation time characterizes the robu
ness of the biochemical clock under the effect of the mole
lar noise. This correlation time~or half-life! is then calcu-
lated for the aforementioned model of circadian rhythms.
this way, several factors of robustness are identified and
cussed.

The paper is organized as follows. The model is p
sented in Sec. II. The stochastic simulations are describe
Sec. III. The theory is developed in Sec. IV. The results
presented and discussed in Sec. V. Conclusions and per
tives are drawn in Sec. VI.

II. PRESENTATION OF THE MODEL

The core mechanism of circadian rhythmicity relies
the negative regulation exerted by a clock protein~i.e., FRQ
in Neurospora, PER inDrosophila! on the transcription of its
gene ~frq or per! into the messenger RNA~mRNA!, the
translation of which leads to the synthesis of the clock p
tein. The time evolution of the three variables involved in t
minimal model~Fig. 1! is governed by the following kinetic
equations:15

d@M#

dt
5vs

kI
n

kI
n1@PN#n 2vm

@M#

km1@M#
,

d@PC#

dt
5ks@M#2vd

@PC#

kd1@PC#
2k1@PC#1k2@PN#,

d@PN#

dt
5k1@PC#2k2@PN#. ~1!

In these equations, the three variables@M#, @PC#, and
@PN# denote, respectively, the concentrations~defined with
respect to the total cell volume! of the clock gene mRNA and
of the cytosolic and nuclear forms of the clock protein. T
parametervs denotes the rate of transcription,kI is the
threshold beyond which the nuclear protein represses

FIG. 1. Model for the molecular mechanism of circadian rhythms. T
model incorporates the transcription of the gene involved in the biochem
clock and the transport of mRNA~M! into the cytosol where it is translate
into the related clock protein (PC) and degraded. The protein can be d
graded or transported into the nucleus (PN) where it exerts a negative feed
back of cooperative nature on the expression of its gene.
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transcription of its gene. This repression is characterized
the Hill coefficientn. This coefficient is determined by th
degree of cooperativity of this reaction, i.e., the numbern of
molecules which have to bind together to promote the re
tion. The other parameters are the maximum ratevm of
mRNA degradation and the Michaelis constantkm related to
the latter process, the apparent first-order rate constanks

measuring the rate of protein synthesis which is assume
be proportional to the amount of mRNA present in the cy
sol, the maximum ratevd of protein degradation, and th
Michaelis constantkd related to this process, and the app
ent first-order rate constantsk1 and k2 characterizing the
transport of the protein into and out of the nucleus.

This model as well as extended models account for
cadian sustained oscillations of clock gene mRNA and clo
protein in continuous darkness and has been used to s
several properties of circadian rhythms such a entrainem
by light–dark cycle and phase resetting following a lig
pulse.15,17,30In an extended model taking into account mo
detailed mechanism of enzymatic kinetics11,12 similar results
have been obtained as for the minimal model~1! presented
here.

III. STOCHASTIC SIMULATIONS

The stochastic simulations have been carried out
means of the Gillespie algorithm.27,28This method simulates
the master equation in a relatively simple manner for se
reactionsr51,2,. . . ,r of the form

(
i 51

s

n,r
i X i→(

i 51

s

n.r
i X i ~2!

of stoichiometric coefficientsnr
i 5n.r

i 2n,r
i and transition

ratesWr($Xi%) ~s being the number of species!.
Initially, the numbers of moleculesXi of the different

speciesi 51, 2, . . . ,s are specified and the transition rat
Wr of the reactionsr51, 2, . . . ,r are computed~here, s
53 andr 56!. A cumulative function is built by

cr5 (
r851

r
Wr8
c0

with c05 (
r51

r

Wr . ~3!

al

TABLE I. Transition rates of the different reaction steps entering the che
cal master equation~6!. We notice that the transition rates are proportional
the extensivity parameterV. These transition rates imply the macroscop
equations~1!, as shown in Eqs.~17! and ~25!.

Reaction step Transition rate Transitions

G→M1G W15vs

kI
nV

kI
n1~PN /V!n M→M11

M→ W25vm

M

km1~M/V!
M→M21

M→PC1M W35ksM PC→PC11

PC→ W45vd

PC

kd1~PC /V!
PC→PC21

PC→PN W55k1PC PC→PC21, PN→PN11

PN→PC W65k2PN PC→PC11, PN→PN21
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Then, two random numbers,z1 andz2 , are generated which
are uniformly distributed in the unit interval. The first on
serves to determine the time interval to the next reac
step, according to

Dt52
1

c0
ln~z1! ~4!

and the second one is used to determine which reaction
occurs during this time interval: Ifcr21,z2,cr , it is the
reaction stepr that takes place. The system is then upda
according to

t→t1Dt,

Xi→Xi1nr
i for all species i

involved in the reactionr ~5!
ity
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and the transition ratesWr are recomputed given the ne
chemical populations and all operations are repeated unti
final time tmax is reached.

In the Gillespie method, an extensivity parameterV al-
lows the control of the size of the system and hence
maximum number of molecules that can be present. The
tensivity parameterV relates the numbersXi of molecules to
the concentrationsxi5@X i #5Xi /V.

The six reaction steps of the model for the circadi
clock illustrated in Fig. 1 and described by Eqs.~1! are listed
in Table I. A transition rateWr (r51,2,. . . ,6) is associated
with each of these reaction steps.

The Gillespie algorithm generates a birth-and-death s
chastic process which is described by the following chem
master equation
d

dt
P~M ,PC,PN ,t !51W1~PN!P~M21,PC,PN ,t !2W1~PN!P~M ,PC,PN ,t !1W2~M11!P~M11,PC,PN ,t !

2W2~M !P~M ,PC,PN ,t !1W3~M !P~M ,PC21,PN ,t !2W3~M !P~M ,PC,PN ,t !

1W4~PC11!P~M ,PC11,PN ,t !2W4~PC!P~M ,PC,PN ,t !1W5~PC11!P~M ,PC11,PN21,t !

2W5~PC!P~M ,PC,PN ,t !1W6~PN11!P~M ,PC21,PN11,t !2W6~PN!P~M ,PC,PN ,t !. ~6!
e
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This equation gives the time evolution of the probabil
P(M ,PC,PN ,t) to find M molecules of mRNA,PC cytoso-
lic clock proteins, andPN nuclear clock proteins. Becaus
this probability depends only on the previous state of
system, this description pertains to Markov processes.

We notice that the master equation~6! is here applied to
a system composed of two intracellular compartments,
the nucleus and the cytosol. Each compartment is supp
to be homogeneous and relatively well-stirred on the ti
scale of the reactions, which are the conditions of validity
the chemical master equation.25 We implicitly assume that
cellular transport processes are efficient and we take t
into account in the kinetic scheme and in the parameter
ues.

IV. THEORY

In this section, we derive a formula for the correlatio
time of the noisy oscillations. We start from the chemic
master equation~6! which we first reduce to a generalize
Fokker-Planck equation ruling the time evolution of t
chemical concentrations:

x1[@M#5
M

V
, ~7!

x2[@PC#5
PC

V
, ~8!

x3[@PN#5
PN

V
~9!
e

.,
ed
e
f

m
l-

l

of the clock mRNA, the cytosolic clock protein, and th
nuclear clock protein, respectively.

Thereafter, we find a solution of the generalized Fokk
Planck equation in the weak-noise limit by using t
Hamilton-Jacobi method.31–34 This solution is expanded
around the periodic solution of the deterministic syste
called the limit cycle, which describes the macroscopic
cillations. We assume that this limit cycle does not underg
bifurcation. Under this condition, the fluctuations around t
limit cycle turn out to be of Gaussian character. Moreov
the phase of the oscillations diffuses along the limit cyc
This phase diffusion is the main mechanism which affe
the periodicity of the oscillations in the presence of the m
lecular fluctuations.35–38The Hamilton-Jacobi method allow
us to determine quantitatively the magnitude of this ph
diffusion, as explained below. A consequence of the ph
diffusion is that the time autocorrelation functions of th
chemical concentrations present oscillations which are ex
nentially damped. An explicit formula is obtained for th
damping rate of the oscillations of the time autocorrelat
functions. The inverse of this damping rate defines the c
relation time of the oscillations of the biochemical clock.

In order to reach this result, we first define the~inten-
sive! reaction rates

wr~x![
1

V
Wr~Vx! ~10!

corresponding to the six~extensive! transition ratesWr(X)
(r51, 2, . . . ,6). Thestoichiometric coefficients of the six
reactions are given by the matrix:
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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@nr
i # i 51,2,3;r51,2, . . . ,6

5

i /r

1

2

3

1 2 3 4 5 6

S 11 21 0 0 0 0

0 0 11 21 21 11

0 0 0 0 11 21
D

in terms of which the chemical master equation~6! takes the
general form

d

dt
P~$Xi%,t !5 (

r51

r

Wr~$Xi2nr
i %!P~$Xi2nr

i %,t !

2Wr~$Xi%!P~$Xi%,t ! ~12!

with i 51, 2, 3.

A. Generalized Fokker-Planck equation

We express the population numbers$Xi% in terms of the
concentrationsxi5Xi /V and we introduce the probabilit
density

P~x,t ![V3P~Vx1,Vx2,Vx3! ~13!

that the concentrations take the valuesx5(x1,x2,x3) at the
current timet.

The chemical master equation~12! can then be expande
in inverse powers of the extensivity parameterV to obtain
the Fokker-Planck equation

]

]t
P~x,t !52(

j 51

s
]

]xj @F j~x!P~x,t !#

1
1

V (
j ,k51

s
]2

]xj]xk @Qjk~x!P~x,t !# ~14!

if the terms of orderV22 and higher are neglected. Th
approximation is justified if the limit cycle does not under
a bifurcation. In Eq.~14!, we have introduced the mean drif
of the concentrations

F j~x!5 (
r51

r

nr
j wr~x! ~15!

and the matrix of diffusivity

Qjk~x!5
1

2 (
r51

r

nr
j nr

kwr~x!. ~16!

This diffusivity matrix is symmetric and non-negative. F
the system defined in Table I, these quantities are given

F15w12w2 ,

F25w32w42w51w6 ,

F35w52w6 ,

Q115 1
2 ~w11w2!,

Q125Q215Q135Q3150,

Q225 1
2 ~w31w41w51w6!,
Downloaded 19 Jun 2002 to 164.15.129.89. Redistribution subject to A
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Q235Q325 1
2 ~2w52w6!,

Q335 1
2 ~w51w6! ~17!

in terms of the reaction rates~10! defined with the transition
ratesWr of Table I.

B. Hamilton-Jacobi method

In the weak-noise limitV→`, the generalized Fokker
Planck equation~14! can be solved thanks to the Hamilton
Jacobi method by assuming that the probability density
the form31–34,38

P~x,t !5expF2Vf0~x,t !2f1~x,t !2
f2~x,t !

V

2
f3~x,t !

V2 2¯G . ~18!

Substituting in the generalized Fokker-Planck equation~14!,
we obtain the following Hamilton-Jacobi equation for th
leading functionf0 :

]f0

]t
1HS x,

]f0

]x D50 ~19!

with the special Hamiltonian

H~x,p!5 (
j ,k51

s

Qjk~x!pj pk1(
j 51

s

F j~x!pj . ~20!

This Hamiltonian depends on the chemical concentrationx
as well as on canonically conjugated variables called m
menta

p[
]f0

]x
. ~21!

Near the thermodynamic equilibrium, the functionf0 would
be interpreted as minus the excess entropyDS of the molecu-
lar fluctuations with respect to the state defined by the c
centrationsx, f052DS, if the extensive parameter is re
placed with the Boltzmann constant,V5kB . In this case, the
momenta could be identified as minus the thermodyna
forces:

pi5
]f0

]xi .2
]DS

]xi . ~22!

In the weak-noise limit, the methods of Hamiltonian m
chanics can thus be used to determine the solution of
generalized Fokker-Planck equation. This solution can be
pressed in terms of the action

f0~x,t !5E p•dx2H dt, ~23!

where the time integral is carried out over the trajectories
Hamilton’s equations:

ẋi51
]H

]pi
5Fi~x!12(

j 51

s

Qi j ~x!pj ,

ṗi52
]H

]xi 52(
j 51

s
]F j~x!

]xi pj2 (
j ,k51

s
]Qjk~x!

]xi pj pk , ~24!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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We notice that the Hamilton equations~24! preserve the
subspace of vanishing momentap50. In this subspace
Hamilton’s equations reduce to the equations of macrosc
chemical kinetics:

ẋi5Fi~x!5 (
r51

r

nr
i wr~x! in p50 ~25!

so that we here recover the macroscopic equations~1! ac-
cording to the three first equations of Eq.~17! and the tran-
sition rates of Table I.

For a biochemical clock, the macroscopic system~25!
admits a limit cycle or periodic attractor, which is a stab
periodic solution of some prime periodT. The prime period
T is the smallest nontrivial number such that

x~ t1rT !5x~ t ! for r 5 . . . ,22,21,0,11,12, . . . .
~26!

The stability of the limit cycle is characterized by linearizin
the macroscopic equations~25!39

d ẋi5(
j 51

s
]Fi~x!

]xj dxj in p50. ~27!

Since this system of equations is linear its general solu
can be expressed in terms of as3s matrix as

dx~ t !5M~ t !•dx~0! such asM~0!5I. ~28!

At the prime periodt5T, this matrix admits the eigenvalue
$Lk% and associated right- and left-eigenvectors accordin

M~T!•ek5Lkek ,

M~T!T
•fk5Lkfk . ~29!

The right- and left-eigenvectors satisfy the biorthonorma
relations

ek•f l5dkl . ~30!

The eigenvalue corresponding to the direction of the flow
always equal to unity:

L151, for e15 ẋ5F~x* ! ~31!

if x* is a point chosen on the limit cycle. Since the lim
cycle is supposed to be stable all the other eigenvalues
isfy the condition: uLku,1 for kÞ1. The corresponding
Lyapunov exponents are defined by

lk[
1

T
lnuLku. ~32!

For a stable limit cycle, the Lyapunov exponents are orde
asl150.l2>l3 . The dissipative character of the macr
scopic system~25! manifests itself in the property that th
time average of the divergence of the macroscopic sys
~25!—or equivalently the sum of Lyapunov exponents—
negative:

lim
t→`

1

t E0

t

div F dt5(
k

lk,0, ~33!

where the integral is performed over a trajectory inp50
which converges toward the limit cycle.39
Downloaded 19 Jun 2002 to 164.15.129.89. Redistribution subject to A
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Since the generalized Fokker-Planck equation~14! is in-
dependent of time, the Hamiltonian~20! does not depend on
time so that Hamilton’s equations~24! preserve a pseudo
energy

E5H~x,p!. ~34!

According to Eq.~18!, the quantityf0 has the physical units
of the inverse of the extensivity parameterV, whereupon we
infer from Eq.~23! that the pseudo-energy has the units o
rate (second21) divided by the units of the extensivity pa
rameterV.

The action ~23! can be expanded in a Taylor serie
around a pointx* of the macroscopic limit cycle and aroun
some repetitionrT of the prime periodT to get:

f0~x,t !.1
1

2

]2f0~x* ,rT !

]t2 ~ t2rT !2

1
1

2

]2f0~x* ,rT !

]x2 :~x2x* !2 ~35!

neglecting higher-order terms. The terms of zeroth and fi
orders ~as well as the cross term of second-order! can be
shown to vanish because the limit cycle belongs to the
variant subspacep50 at vanishing pseudo-energyE50 ~see
elsewhere40!. The second derivative of the action with re
spect to the time at some pointx5x* can be shown40 to be
related to the derivative of the period with respect to t
pseudo-energy according to

]2f0~x* ,rT !

]t2 5
1

rU]T

]EU
. ~36!

The sign can also be shown to be positive.40

Accordingly, the probability density around some poi
x* of the limit cycle is given by

P~x,t !;expF2
V

2r u]ETu ~ t2rT !2

2
V

2

]2f0~x* ,rT !

]x2 :~x2x* !2G ~37!

in the weak-noise limitV→`. In this limit, the probability
density is thus of Gaussian character not only in the spac
chemical concentrationsx but also in time around each rep
etition rT of the prime period.

C. Phase diffusion and consequences

As time increases, the probability distribution of th
phase drifts and spreads along the time axis according to
following mean and variance:

^t&.rT, ~38!

^~ t2rT !2&.
r

V
u]ETu. ~39!

We observe that the variance increases linearly with the
etition numberr of the prime period, as expected for a pr
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 2. Circadian oscillations given by the negative feedback model schematized in Fig. 1.~a! Oscillations of mRNA (M ) and cytosolic clock protein (PC)
obtained, in the absence of noise, by numerical integration of the three deterministic kinetic equations~1! governing the time evolution of the model. Th
period is about 22h. The oscillations ofPN are similar to those ofPC and are not shown.~b! Corresponding oscillations generated by the model, in
presence of noise, forV5100 andn54. The data, expressed in numbers of molecules of mRNA (M ) and of cytosolic protein (PC), are obtained by stochasti
simulations using the Gillespie algorithm.~c! Limit cycles represented as a projection into the (M ,PC) plane, corresponding to the deterministic~bold curve!
and noisy~thin curves! oscillations. In this panel, the deterministic concentrations have been scaled to correspond to the number of molecules by m
the variables byV5100. The other parameter values are:vs50.5 nM h21, kI52.0 nM, vm50.3 nM h21, km50.2 nM, ks52.0 h21, vd51.5 nM h21, kd

50.1 nM, k150.2 h21, k250.2 h21.
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cess of phase diffusion in the direction longitudinal to t
limit cycle. The temporal diffusivity of the phase has th
value

lim
r→`

^~ t2rT !2&

^t&
.

u]ETu
VT

. ~40!

As expected, the phase diffusion disappears in the noise
limit V5`.

If we defined the distribution of first-return times at
given value of a particular concentrationxi , Eq. ~37! would
suggest that the recurrences of the noisy clock are distrib
randomly around the prime periodT of the noiseless limit
cycle. Indeed, according to Eq.~37! with r 51, the distribu-
tion of the times of first return should be given by the Gau
ian

P~ t !.
1

sA2p
expF2

~ t2T!2

2s2 G ~41!

in the limit V→`. If the effects of the fluctuations trans
verse to the limit cycle are neglected, the standard devia
of the distribution~41! is approximately given by

s'
u]ETu1/2

V1/2 for V→`. ~42!

Furthermore, the phase diffusion directly affects the ti
autocorrelation functions of the chemical concentrations:

C~ t ![^xi~ t !xi~0!&. ~43!

Such time autocorrelation functions can be expressed
terms of the solution of the generalized Fokker-Planck eq
tion ~14! from some initial probability densityP0(x0) as
Downloaded 19 Jun 2002 to 164.15.129.89. Redistribution subject to A
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C~ t !5E xiP~x,t;x0!x0
i dx dx0 . ~44!

According to Eq. ~37!, such a probability density has
Gaussian dependence on time near each repetitionrT of the
prime period in the weak-noise limit. As time increases t
probability density in Eq.~44! is therefore composed of
sum of Gaussian pulses. By the method of Laplace tra
forms, such a function can be shown40 to present damped
oscillations of the form

C~ t !.C01uC1uexpS 2
t

t D cos~vt1a1! ~ t→`! ~45!

with some coefficientsC0 , uC1u and a phasea1 , which de-
pend on the particular concentration entering the definit
of the autocorrelation function~43!.29 However, the pulsation
v and the correlation timet are independent of the particula
concentration and are given by40

v.
2p

T
, ~46!

t.
2VT

u]ETu S T

2p D 2

. ~47!

We introduce the half-life of the autocorrelation function
the time when the exponential enveloppe of the autocorr
tion function~43! has decreased by 50%. Therefore, the ha
life of the oscillations of the autocorrelation function is r
lated to the correlation time by

t1/2[t ln 2.
V ln 2

a
~48!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 3. Effect of the number of mol-
ecules on the robustness of the circ
dian oscillations. Shown are the nois
limit cycles, represented as a projec
tion into the (M ,PC) plane, for param-
eter valuesV5500, 100, 50, and 10.
The other parameter values are as
Fig. 2.
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with the coefficient

a5
u]ETu

2T S 2p

T D 2

. ~49!

We observe that the half-life~48! increases proportionally to
the sizeV of the system: the larger the system, the mo
correlated the oscillations are. We also notice that the h
life depends on the derivative of the period with respect
the pseudo-energy~34! of the Hamiltonian~20!. This deriva-
tive can be calculated as explained in the Appendix.

The correlation time~47! provides an estimation of th
minimum number of molecules required in the system for
oscillations to remain correlated in time over more than o
prime period. Indeed, the autocorrelation function still p
sents a detectable recurrence as long asvt.1, i.e., if the
extensivity parameter is larger than a critical value given

V.Vc5
pu]ETu

T2 . ~50!

Since the number of molecules of species Xi is Xi5Vxi the
maximum total number of molecules during one period
the oscillations is

Nmax5VS (
i 51

s

xi D
max

. ~51!

Therefore, in order for the oscillations to remain correlat
the total number of molecules which are present in the s
tem should be larger than the critical value
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N5(
i 51

s

Xi.VcS (
i 51

s

xi D
max

~52!

with Vc given by Eq.~50!. The minimum total number of
molecules~52! depends on the characteristic quantities of
limit cycle as well as on the diffusivity matrix~16! which
enters in the expression ofVc given by Eq.~50! because the
pseudo-energyE depends on the diffusivity by Eqs.~20! and
~34!. On the other hand, the prime periodT and the maxi-
mum of the sum of concentrations depend only on the m
drifts F(x) of the macroscopic kinetic equations~25!.

We should here remark that the biochemical oscillatio
can still be observable forV,Vc below the critical value
~50!. However, the recurrence~or first-return! times are then
widely distributed in time with a standard deviation~42!
larger than the period:

s.T if V,
Vc

p
. ~53!

V. RESULTS AND DISCUSSION

In this section, we present the results of the simulation
the biochemical clock with Gillespie algorithm and we com
pare with the predictions of the theory exposed in Sec. I
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 4. Time evolution of the autocor-
relation function for different values of
the extensivity parameterV corre-
sponding to oscillations shown in Fig
3. When V is decreased, the loss o
correlations, which corresponds to th
damping of the correlation function, is
more rapid. The other parameter va
ues are as in Figs. 2 and 3.
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A. Comparison between deterministic and stochastic
oscillations

For a given set of parameters values, the numerical i
gration of the deterministic kinetic equations~1! of the
model presents sustained oscillations corresponding t
limit cycle with a period of about 22h@Fig. 2~a!#. Similar
oscillations are obtained by stochastic simulations of
model using the Gillespie method explained in Sec. III@Fig.
2~b!#. These figures show that the stochastic oscillatio
present fluctuations around the deterministic limit cycle. T
amplitude of these fluctuations depends on the numbe
molecules present in the system. In the phase space,
fluctuations correspond to a set of trajectories around
deterministic limit cycle@Fig. 2~c!#. If the number of mol-
ecules in the system is too low the fluctuations take over
regular oscillations and the system loses its periodicity.

In the Gillespie method, the extensivity parameterV
controls the total number of molecules that can be presen
the system. For values ofV of the order of 500, the trajec
tories in the phase space are densely packed around th
terministic limit cycle~Fig. 3, with V5500!. Upon decreas-
ing V ~i.e., when lowering number of molecules!, the
trajectories expand and explore a larger area of the ph
space. The dispersion of the trajectories in the phase spa
not homogeneous but depends on the characteristics o
limit cycle. The phase portraits show regions of contract
and others of expansion of phase-space volumes~Fig. 3!. At
very low values ofV ~of the order of 10! the structure of the
limit cycle is nearly completely lost and the system produ
widely irregular oscillations~Fig. 3, with V510!.
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B. Half-life of the autocorrelation functions

The effect of the molecular noise on the robustness
the oscillations can be characterized by the autocorrela
functions depicted in Fig. 4. WhenV5500, the autocorrela-
tion function presents oscillations which are slowly damp
In this case, the system would keep its periodicity duri
several days: The half-life of the correlation is about 44
~i.e., 20 days!. If V is decreased, we observe that the dam
ing of the correlation function becomes more pronounc
Consequently, when the number of molecules present in
system is lowered, the effect of the fluctuations is higher
the periodicity of the system. ForV5100, the half-life of
the correlation is about 100h~i.e., 4 days!, at V550 the
half-life is only about 48h, and atV510, correlations are
rapidly lost in less than a period of the oscillations. This lo
of correlation is mainly due to the diffusion of the phase.35–38

We emphasize that, in agreement with the theoret
discussion in Sec. IV, the noisy system still presents re
tively well-defined oscillations@Fig. 2~b!, with V5100# with
a mean period very close to the deterministic period. Nev
theless, the memory of the initial conditions and, especia
of the phase, is progressively lost as time increases bec
of phase diffusion. The lower is the number of molecu
present in the system, the more rapid is the loss of the in
condition memory.

As explained in Sec. IV, we expect a linear relationsh
betweenV and the half-life of the autocorrelation functio
according to Eq.~48!. The values of the quantities enterin
into the coefficient~49! are given in Table II. On the othe
hand, we have computed the half-life for varying values ofV
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 19 J
TABLE II. Numerical values for the periodT, the derivative]T/]E, and the Lyapunov exponents$l1 ,l2 ,l3%
vs the Hill coefficientn for the model of Table I with the parameters:vs50.5 nM h21, kI52.0 nM, vm

50.3 nM h21, km50.2 nM, ks52.0 h21, vd51.5 nM h21, kd50.1 nM, k150.2 h21, k250.2 h21. The unit
of time is the hour~h!.

n T ]T/]E l1 l2 l3

1.0 30.926 22107.3 0.0 20.020 20.532
1.5 27.077 2751.8 0.0 20.074 20.662
2.0 25.029 2537.3 0.0 20.118 20.806
2.5 23.774 2460.7 0.0 20.160 20.925
3.0 22.945 2430.0 0.0 20.198 21.018
3.5 22.372 2417.2 0.0 20.231 21.090
4.0 21.962 2412.6 0.0 20.261 21.147
4.5 21.661 2412.8 0.0 20.286 21.191
5.0 21.435 2414.2 0.0 20.309 21.226
5.5 21.261 2416.8 0.0 20.328 21.253
6.0 21.124 2420.4 0.0 20.346 21.275
6.5 21.016 2421.6 0.0 20.361 21.292
7.0 20.927 2424.0 0.0 20.374 21.306
7.5 20.854 2425.7 0.0 20.387 21.317
8.0 20.792 2427.3 0.0 20.397 21.326
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by stochastic simulation. Figure 5 shows the perfect ag
ment between the simulations and the theoretical predic
~48! with the coefficient~49!. Indeed, by linear regression
we find

t1/2

T
50.04 11 V ~54!

in the case of the Hill coefficientn54, which is in excellent
agreement with the theoretical value of

t1/2

T
50.041 05V ~55!

according to the formula~49!.
We have also studied the influence of the Hill coef

cient, n, on the robustness of the oscillations. Figure 6
picts the behavior of the half-life for a system withV
5100 as a function of the Hill coefficientn, i.e., of the
degree of cooperativity of the inhibition in the production
the clock mRNA. We observe in Fig. 6 that the half-li

FIG. 5. The half-life of the autocorrelation function vs the extensivity p
rameterV in the case of the Hill coefficientn54. The black points are the
averages measured on 20 simulations, each over 50 000 hours~i.e., about
2200 periods! and vertical bars are standard deviations with a confide
interval of 95%. The dependence is linear as predicted by Eq.~48!. A linear
regression gives a slope of 0.0411~solid line! with a correlation coefficient
R50.999 81.
un 2002 to 164.15.129.89. Redistribution subject to A
e-
n
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rapidly increases as the Hill coefficient increase fromn51
to n52. A maximum is reached betweenn52 andn53. The
half-life then decreases to a moderately high value for hig
valuesn.3 of the Hill coefficient. This behavior, which is
explained here below, has also been observed for more
tailed models of circadian rhythms.11 Accordingly, for a
given value ofV, the limit cycle is more robust with respec
to the molecular noise when the system has a Hill coeffici
larger thann51. The cooperativity of the inhibition is thus
factor that allows the systems to resist to the molecular no

Several factors explain the increase of the correlat
time of the biochemical clock in the presence of coopera
ity. When the Hill coefficient takes the unit valuen51 the
limit cycle is of harmonic type and located in the middle
the phase space@Fig. 7~a!#. In contrast, the anharmonicit
and the stiffness of the limit cycle increases with the H
coefficient. The limit cycle then becomes of relaxation ty

-

e

FIG. 6. Half-life of autocorrelations vs the degree of cooperativity char
terized by the Hill coefficientn for V5100. The solid line corresponds t
the theoretical curve given by Eqs.~48! and ~49!. The black points are the
averages measured on 20 simulations, each over 50 000 hours~i.e., about
2200 periods! and vertical bars are standard deviations with a confide
interval of 95%. The parameter values are the same as in Fig. 2. The m
mum results from the combined effect of the decrease of the period@see Fig.
7~b!# and the increase of]ET ~see Fig. 8! asn increases~see text!.
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FIG. 7. ~a! Phase portrait of the limit cycle of the mac
roscopic system for varying values of the Hill coeffi
cient n. ~b! Period of the oscillations vs the degree o
cooperativity given by Hill’s coefficientn for V
5100. The black points are the means of the peri
measured on 20 simulations each of about 2200 peri
~as in Fig. 6!. The solid line corresponds to the value
of the period calculated by integrating the determinis
kinetic equations. The parameter values are the sam
in Fig. 2.
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and part of it evolves at low concentrations near the axe
the phase space@Fig. 7~a!#. Moreover, Fig. 7~b! shows that
the period of the limit cycle varies more rapidly forn51
than for higher values of Hill’s coefficient, which is a furthe
evidence of the fragile character of the oscillations wh
n51.

According to Eq.~49!, the main parameter which con
trols the half-life of the autocorrelation function is the d
rivative ]ET of the period with respect to the pseudo-ener
This quantity is plotted as a function of the Hill coefficient
Fig. 8. We observe in this figure that this quantity increa
very much betweenn51 and n52, reaches an unpro
nounced maximum nearn54, and tends to a nearly consta
value at higher values ofn when the limit cycle becomes o
relaxation type. Equations~48! and ~49! show that the half-
life behaves ast1/2;VT3/u]ETu. Accordingly, the maximum
of the half-life aroundn.3 observed in Fig. 6 results from
the combined effect of the rapid increase of]ET betweenn
51 andn52 ~Fig. 8! and of the slow decrease of the perio
T which persists forn.3 @Fig. 7~b!#. We notice that the
maximum of the half-life occurs where]nt1/250, i.e., where
3]nT/T5]nu]ETu/u]ETu, which explains that the maximum
of t1/2 does not coincide with the maximum of]ET where
]nu]ETu50.

C. Distribution of the first-return times

Even in the presence of noise, we see in Fig. 2~b! that
the oscillations of the biochemical clock repeat themselve
spite of the decay of the autocorrelation function depicted
Fig. 4. Indeed, the autocorrelation functions measure the
relation between an event at a given timet0 and another
event at a later timet01t. The phase diffusion tends to de
stroy these correlations, but the oscillations remain. Acco
ingly, it is interesting to study a further quantity that wou
describe the repetitive and sustained character of the n
oscillations. Such a quantity is the probability distribution
the times of first return of one of the concentrations~or
equivalently one of the numbers of molecules! to its average
value. The theory of Sec. IV predicts that this distributi
should be Gaussian of the form~41! with an average close to
the deterministic periodm'T and a standard deviation give
by Eq. ~42! in the weak-noise limitV→`.

Figure 9~a! depicts the histogram of the first-retur
times, which shows that the distribution remains we
Downloaded 19 Jun 2002 to 164.15.129.89. Redistribution subject to A
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centered around the deterministic period. The standard de
tion s is depicted in Fig. 9~b! and we find by linear regres
sion that

s5
20.1

V1/2 ~56!

which is in good agreement with the theoretical value p
dicted by Eq.~42!

s5
20.3

V1/2 ~57!

in the casen54 ~cf. Table II!.
These results confirm that the oscillations may

dephased by the phase diffusion but that they remain
tained even in the presence of molecular fluctuations. T
first-return times are better and better centered on the de
ministic period as the system becomes macroscopic.

D. Effect of the attractivity of the limit cycle

We have also observed that the Lyapunov exponent
the limit cycle become more negative for increasing valu
of the Hill coefficientn. Hence, the limit cycle attracts mor
strongly the trajectories when the Hill coefficient is high
~Fig. 10!. As a consequence, the contractivity of phase-sp

FIG. 8. Derivative]T/]E of the period of the oscillations with respect t
the pseudo-energyE vs the Hill coefficientn. The parameter values are th
same as in Fig. 2.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



e
e

vs
-
000

11007J. Chem. Phys., Vol. 116, No. 24, 22 June 2002 Biochemical clocks and molecular noise
FIG. 9. ~a! Histogram of the times of first return of the
numberM of mRNA to its average value, in the cas
n54 andV5100. The histogram is obtained from on
simulation over 50 000 hours~i.e., about 2200 periods!.
~b! Standard deviation of these first-return times
V21/2 in the casen54. The black points are the aver
ages measured on 20 simulations, each over 50
hours.
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volumes @which is characterized by the divergence of t
macroscopic equations according to Eq.~33!# also increases
with n.

This divergence is the main factor influencing the disp
sion of the trajectories around the limit cycle@Figs.
11~c!,11~d!#. The contraction of nearby trajectories is max
mal when the divergence of the flow near the limit cycle
minimal. Around the minimum of divergence the trajectori
are compressed in the phase space. Figure 11~c! shows the
divergence along the limit cycle during one period. Figu
11~d! shows the limit cycle in the phase space plane (M ,PC)
on which the values of the divergence have been repor
The minimum of divergence (29.54) corresponds to th
lower left corner of the (M ,PC) plane where most of the
contraction of the trajectories occurs~Fig. 3!. It corresponds
to a low number of molecules present in the system. T
divergence is minimal at the minima of mRNA (M ) and
cytosolic protein (PC) number of molecules@Fig. 11~a! and
Figs. 3~a!–3~d!#. Figure 12 depicts the divergence and t
speed versus the Hill coefficientn.

We observe in Fig. 3 and Fig. 11 that the spreading
the trajectories occurs when the chemical reactions of
biological clock are producing molecules.

We also notice that the speed along the limit cycle p
sents its minimum when the divergence is minimal. It p
sents a second local minimum corresponding to the m
mum reached by the nuclear proteins during the oscillatio
The speed along the limit cycle is thus maximal when
system is producing or destroying molecules, i.e. when
number of molecules is rapidly rising or decreasing. T
variation of speed along the limit cycle is correlated to t
phase relationship between the variables. First, the num
of mRNA molecules is slowly rising due to the absence
repression. The mRNA molecules induce the rapid synth
of cytosolic proteins which are progressively transported i
the nucleus where they exert their repression activity. S
ond, the speed reaches its maximum and starts to decr
because the number of nuclear proteins is at its maxim
repressing the transcription and hence the proteins synth
Third, the speed rise again while the system is rapidly
grading the cytosolic and nuclear proteins.

However, the speed does not play the main role in
spreading of the trajectories, which is mainly determined
the divergence of the macroscopic equations and therefor
the local attractivity of the limit cycle. This attractivity in
Downloaded 19 Jun 2002 to 164.15.129.89. Redistribution subject to A
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creases with the Hill coefficient together with the gene
increase of the correlation time~or half-life! of the oscilla-
tions. We can here conclude that the cooperativity tends
increase the attractivity of the limit cycle, which also co
tributes to the robustness of the oscillations.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have studied the influence of molecu
fluctuations on biochemical clocks and, in particular, on c
cadian rhythms. Since these biochemical clocks take p
inside a single cell, the low number of molecules involved
the subcellular level has the consequence that the molec
fluctuations can play a significant role. In order to addre
this question we have here studied the effect of these fl
tuations on a simple model of the circadian rhythm.

In the presence of molecular fluctuations, the time e
lution of the chemical populations obeys a stochastic proc
which we have modeled as a birth-and-death process
scribed by the chemical master equation by Nicolis a
co-workers.24–26 The reactions are supposed to take pla
homogeneously within each of the two intracellular compa
ments of the model, namely, the nucleus and the cyto
This process has been simulated by an algorithm propo
by Gillespie.27,28 Because of the molecular noise, the chem
cal concentrations are randomly distributed around the li
cycle of the corresponding macroscopic system. Moreo

FIG. 10. Lyapunov exponentsl150.l2.l3 vs the Hill coefficientn.
These points have been calculated by Eq.~32! with the same paramete
values as in Fig. 2.
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FIG. 11. ~a! Deterministic oscillations for the three
variablesM , PC andPN over one period is shown with
the corresponding limit cycle@panel~b!#. Time 0 is de-
fined as the minimum ofM . The parameter values ar
the same as in Fig. 2.~c! Divergence and~e! speed
along one period, panels~d! and ~f! show the limit
cycles on which the values of the divergence and t
speed have been reported at different time.
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the noise induces a phase diffusion, which causes a los
correlation between the successive oscillations which ne
theless continue to be sustained.35–38The loss of correlation
reduces the robustness of the biochemical clock. As a veh
of our study we have here considered the minimal model~1!
but we should mention that stochastic simulations of
tended versions of this model lead to similar results.11,12

The robustness of the oscillations can been character
by different methods: phase portraits, autocorrelation fu
tions, probability distribution of first-return times, global an
local stability analyses. First of all, we have computed
autocorrelation functions, which measure the statistical c
relation between successive oscillations. Our simulati
show that such autocorrelation functions present oscillati
which are exponentially damped. The damping rate of
exponential envelope of the autocorrelation function defi
a half-life or time of correlation between successive osci
tions. This half-life is directly determined by the phase d
fusion and we have been able to obtain a precise and q
titative theoretical prediction for the half-life of th
autocorrelation function.

With the Hamilton-Jacobi method, we have inferred th
the half-life of the autocorrelation functions, as well as t
inverse of the variance of the probability distribution of firs
return times, are inversely proportional to the quantityu]ETu
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which is the derivative of the period of the oscillations wi
respect to the pseudo-energyE of the Hamilton-Jacobi
method@cf. Eqs.~42! and~48!–~49!#. Our results lead to the
general prediction that the smaller the quantityu]ETu is the
greater the robustness of the oscillator is. Besides, we no
that the quantityu]ETu takes values which are specific to th
kinetic scheme and the parameter values of the model u
study. For the kinetic scheme~1!, we have here shown tha
the quantityu]ETu decreases significantly in the presence
cooperativity in the inhibition of the production of cloc
mRNA by the nuclear clock protein. The theoretical pred
tions have been found to be in excellent agreement with
numerical simulation based on Gillespie’s method.

These results show that the half-life very much depe
on the nonlinearity of the biochemical oscillator and, esp
cially, on the Hill coefficient which characterizes the coo
erativity. Without cooperativity, the limit cycle appears to b
fragile with a highly variable period and a low attractivit
With cooperativity, the nonlinearity and the stiffness of t
kinetics increases and the limit cycle becomes of relaxa
type.

Relaxation-type limit cycles turn out to be much le
sensitive to molecular noise and to be much more attract
as evidenced by the behavior of the quantityu]ETu and of the
Lyapunov exponents. A local analysis of the stability and,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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particular, of the divergence of trajectories around the lim
cycle, confirms the importance of the attractivity in the r
bustness of the oscillations.

Here, we should mention that the sensitivity to molec
lar noise is enhanced when the kinetic parameters are c
to a point of Hopf bifurcation. Indeed, the Hopf bifurcatio
is known to be the origin of the oscillations and a limit cyc
weakens its attractivity in the vicinity of a Hop
bifurcation.25,39 Accordingly, the robustness of the oscilla
tions would be affected near a Hopf bifurcation as it has b
shown by numerical simulations done with extended v
sions of the core model presented here.41 In this regard, we
point out that the present results are obtained for param
values far from the Hopf bifurcation points. Since, for t
present model, the domain of oscillation is relatively large
the parameter space, our results would remain valid for
nificant changes in the parameter values. The lack of rob
ness reported in Ref. 10 on a related extended version o
present core model may be due, as shown in Ref. 11
smaller values of some parameters that bring the system
close to the Hopf bifurcation point.

Our results also show that a biochemical clock require
minimum number of molecules involved in its reacting n
work in order to be able to keep the time and act as a cl
@cf. Eq. ~52!#. This conclusion is of particular importance
our understanding of self-organization in biological syste
because it gives a fundamental limit to the proper functi
ing of regulatory reaction networks under nonequilibriu
conditions. In this perspective, nonequilibrium se

FIG. 12. ~a! Divergence and~b! speed along one period of the oscillation
for values of the degree of cooperativityn ranging from 1 to 8. Note that the
period increases asn decreases@Fig. 7~b!#. The other parameter values a
the same as in Fig. 2. Whenn is increased the oscillations become mo
anharmonic.
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organization appears as a possible emerging property be
a critical minimum size. Self-organization below such a cr
cal size is nevertheless possible in the form of equilibriu
structures by mechanisms such as the self-assembly o
pramolecular structures, which can be involved in noneq
librium functions as in the case of molecular motors.

Another important aspect is the robustness of the b
chemical clocks under an external periodic forcing. T
study of Ref. 30 has shown that a periodic forcing can indu
a phase locking of the clock by the external signal. The s
sitivity of this phase locking with respect to the molecul
noise can be quantitatively studied by methods similar to
ones developed in the present work.11

In conclusion, we have here developed quantitat
methods which allow us to address the question of the
bustness of biochemical clocks under the influence of
molecular noise. We think that these methods can be app
to further systems and will contribute to clarify the role
molecular noise in circadian rhythms and other chemica
biochemical clocks.
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APPENDIX: METHOD OF CALCULATION OF ­TÕ­E

The derivative]T/]E can be calculated by linearizin
Hamilton’s equations~24! around the limit cycle in the in-
variant subspacep50:

d ẋ5
]F

]x
•dx12Q•dp,

dṗ52
]FT

]x
•dp ~A1!

with F5$F j% j 51
s andQ5$Qjk% j ,k51

s .
Outside the invariant subspacep50, we expect that the

limit cycle extends into another periodic solution of slight
shifted periodT1dT such that

x~T1dT!5x~0!,
p~T1dT!5p~0!

~A2!

at the pseudo-energy

dE5H.F@x~0!#•dp~0!. ~A3!

The perturbations with respect to the limit cycle inp50 are
therefore given by the coupled equations

H dx~T!1 ẋ~T!dT5dx~0!

dp~T!1ṗ~T!dT5dp~0!
~A4!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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with ẋ(T)5 ẋ(0)5F@x(0)# andṗ(T)5ṗ(0)50 for the limit
cycle in p50. The solution of the linearized equations~A1!
are given by

H dx~T!5M~T!•dx~0!1N~T!•dp~0!

dp~T!5M~T!21 T
•dp~0!

, ~A5!

whereM(T) is the matrix introduced in Eq.~28! while

N~T!52M~T!•E
0

T

M~t!21
•Q@x~t!#•M~t!21 Tdt.

~A6!

The initial perturbations on the limit cycle can be e
panded in the bases of the right- and left-eigenvectors~29! of
the matrixM(T) as

dx~0!5(
k

djkek and dp~0!5(
k

dpkfk . ~A7!

Since the eigenvectors are biorthonormal ande15F@x(0)#,
we obtain from Eq.~A3! thatdp15dE. By the second lines
of Eqs.~A4! and ~A5!, we moreover get thatdpk50 if Lk

Þ1. Similarly, the first lines of Eqs.~A4! and ~A5! give an
equation fordT anddjk . Taking the scalar product withf1

and using the biorthonormality~30!, we obtaindT in terms
of dE and thus

]T

]E
52

f1
T
•N~T!•f1

f1•e1
. ~A8!

This expression can be rewritten as

]T

]E
52

f1•d x̃~T!

f1•e1
, ~A9!

whered x̃(T)5N(T)•f1 is solution of the linearized system
~A1! from the special initial conditionsd x̃(0)50 and
dp̃(0)5f1 @see Eq.~A5!#.

In this way, we can obtain the derivative of the peri
with respect to the pseudo-energy in terms of the ma
M(T) of stability of the limit cycle and its right- and left
eigenvectors associated with the direction of the flow alo
which the phase diffusion occurs.

The method presented in this Appendix is related to
method of Ref. 38 based on Floquet theory. The pres
method does not use Floquet theory and can be impleme
with a numerical integrator of ordinary differential equation
In the present paper, the numerical integrations have b
carried out with a fourth-order Runge-Kutta integrator.
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