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Abstract. Circadian rhythms which occur with a period close to 24 h in nearly all living organisms

originate from the negative autoregulation of gene expression. Deterministic models based on genetic

regulatory processes account for the occurrence of circadian rhythms in constant environmental

conditions (e.g. constant darkness), for entrainment of these rhythms by light-dark cycles, and for

their phase-shifting by light pulses. At low numbers of protein and mRNA molecules, it becomes

necessary to resort to stochastic simulations to assess the influence of molecular noise on circadian

oscillations. We address the effect of molecular noise by considering two stochastic versions of a core

model for circadian rhythms. The deterministic version of this core model was previously proposed

for circadian oscillations of the PER protein in Drosophila and of the FRQ protein in Neurospora.

In the first, non-developed version of the stochastic model, we introduce molecular noise without

decomposing the deterministic mechanism into detailed reaction steps while in the second, developed

version we carry out such a detailed decomposition. Numerical simulations of the two stochastic

versions of the model are performed by means of the Gillespie method. We compare the predictions

of the deterministic approach with those of the two stochastic models, with respect both to sustained

oscillations of the limit cycle type and to the influence of the proximity of a bifurcation point beyond

which the system evolves to a stable steady state. The results indicate that robust circadian oscil-

lations can occur even when the numbers of mRNA and nuclear protein involved in the oscillatory

mechanism are reduced to a few tens or hundreds, respectively. The non-developed and developed

versions of the stochastic model yield largely similar results and provide good agreement with the

predictions of the deterministic model for circadian rhythms.
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1. Introduction

To adapt to the natural periodicity of terrestrial environment characterized by the al-

ternation of day and night, most living organisms, from cyanobacteria to mammals,

have developed the capability of generating autonomously sustained oscillations

with a period close to 24 h. These oscillations, known as circadian rhythms, are

endogenous because they can occur in constant environmental conditions, e.g.

constant darkness [1, 2]. During the last decade experimental advances have shed

much light on the molecular mechanism of circadian rhythms [3]. Among the

most prominent organisms that have been considered for such studies are the fly
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Drosophila [4, 5] and the fungus Neurospora [3]. Molecular studies of circadian

rhythms have since been extended to cyanobacteria, plants and mammals [6, 7].

The picture that emerges from these experiments is that in all cases investigated

so far, the molecular mechanism of circadian oscillations relies on the negative

autoregulation exerted by a protein on the expression of its gene [3–8].

A number of genes and their protein products involved in such a regulatory

mechanism have been identified. Thus, in Drosophila, the proteins PER and TIM

form a complex that indirectly represses the activation of the per and tim genes

while in Neurospora, it is the FRQ protein that represses the expression of its gene

frq [3–6]. The situation in mammals resembles that observed in Drosophila, but

instead of TIM it is the CRY protein that forms a regulatory complex with a PER

protein to inhibit the expression of the per genes [7]. Light can entrain circadian

rhythms by inducing degradation of the TIM protein in Drosophila, and expression

of the frq and per genes in Neurospora and mammals, respectively [3–7].

Based on these experimental observations a number of mathematical models

for circadian rhythms have been proposed [9–15]. Such models generally take the

form of a system of coupled ordinary differential equations. These deterministic

models predict that in a certain range of parameter values the genetic regulatory

network undergoes sustained oscillations of the limit cycle type corresponding to

circadian rhythmic behavior, whereas outside this range the gene network operates

in a stable steady state.

The number of molecules involved in the regulatory mechanism within the

rhythm-producing cells is generally not known. The amount of interacting mo-

lecules taking part in circadian oscillations in vivo may well vary from a few

thousands down to hundreds and even a few tens of protein or messenger RNA mo-

lecules. At such low concentrations it becomes necessary to resort to a stochastic

approach. The purpose of this paper is to compare the predictions of deterministic

and stochastic models for circadian oscillations.

We first consider in section 2 the deterministic version of a core model based on

the negative regulation exerted by a protein on the expression of its gene. In section

3 we analyze two stochastic versions of this core molecular model for circadian

rhythms. In the first version we introduce molecular noise without decomposing the

deterministic mechanism into detailed reaction steps while in the second version

we carry out such a detailed decomposition. The results of stochastic simulations

performed by means of the Gillespie method [16, 17] are presented in section 4.

We assess the robustness of circadian oscillations with respect to molecular noise

and compare the predictions of the deterministic version of the model and of its two

stochastic versions. We extend this comparison in section 5 by examining how the

proximity from a bifurcation point influences the robustness of circadian oscilla-

tions with respect to molecular noise. Section 6 is devoted to a discussion of these

results in regard to their significance both for cell physiology and for stochastic

simulations.
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Figure 1. Core model for circadian rhythms. The model represents a prototype for the molecu-

lar mechanism of circadian oscillations based on negative autoregulation of gene expression.

The model incorporates gene transcription, transport of mRNA (MP) into the cytosol where it

is translated into the protein (P0) and degraded. The protein can be reversibly phosphorylated

from the form P0 into the forms P1 and P2, successively. The latter form is degraded or

transported into the nucleus (PN) where it exerts a negative feedback of cooperative nature

on the expression of its gene. The model accounts for circadian oscillations of per mRNA and

PER protein in Drosophila, and frq mRNA and FRQ protein in Neurospora [9, 10, 12]. Similar

results are obtained for Drosophila in a more extended model incorporating the formation of

a complex between the PER and TIM proteins [11–13]. The figure provides a scheme for the

deterministic, 5-variable core model considered in section 2 for circadian oscillations, with

indication of parameters characterizing the different steps [9, 10]: mRNA (MP) is synthetized

in the nucleus and transferred to the cytosol where it accumulates at a maximum rate vs ; there

it is degraded by an enzyme of maximum rate vm, and Michaelis constant Km. The rate of

synthesis of the protein P0, proportional to MP, is characterized by an apparent first-order

rate constant ks . Parameters vi and Ki (i = 1,. . .,4) denote the maximum rate and Michaelis

constant of the kinase and phosphatase involved in the reversible phosphorylation of P0 into

P1 and P1 into P2, respectively. The fully phosphorylated form P2 is degraded by an enzyme

of maximum rate vd and Michaelis constant Kd , and transported into the nucleus at a rate

characterized by the apparent first-order rate constant k1. Transport of the nuclear form PN

into the cytosol is characterized by the apparent first-order rate constant k2. The negative

feedback exerted by PN on gene transcription is described by an equation of the Hill type, in

which n denotes the degree of cooperativity, and KI the threshold constant for repression.

2. Deterministic Version of the Core Molecular Model for Circadian

Oscillations

We consider a five-variable model previously proposed for circadian oscillations

of the PER protein and per mRNA in Drosophila [9, 10], which also applies to

oscillations of FRQ and frq mRNA in Neurospora [12]. The model, schematized in

Figure 1, is based on the negative feedback exerted by a protein on the expression of

its gene. The gene is first expressed in the nucleus and transcribed into messenger

RNA (mRNA). The latter is transported into the cytosol where it is degraded and

translated into the protein P0. The protein (PER or FRQ) undergoes multiple phos-

phorylation, from P0 into P1 and from P1 into P2. These modifications, catalyzed
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by a protein kinase, are reverted by a phosphatase. The fully phosphorylated form

of the protein is marked up for degradation, and transported into the nucleus in a

reversible manner. The nuclear form of the protein (PN ) represses the transcription

of the gene.

In the model, the temporal variation of the concentrations of mRNA (MP ) and

of the various forms of the regulatory protein, cytosolic (P0, P1, P2) or nuclear

(PN ), is governed by the following system of kinetic equations (see references 9

and 10 for further details):

dMP

dt
= vs

Kn
I

Kn
I + P n

N

− vm

MP

Km + MP

dP0

dt
= ksMP − v1

P0

K1 + P0

+ v2

P1

K2 + P1

dP1

dt
= v1

P0

K1 + P0

− v2

P1

K2 + P1

− v3

P1

K3 + P1

+ v4

P2

K4 + P2

dP2

dt
= v3

P1

K3 + P1

− v4

P2

K4 + P2

− vd

P2

Kd + P2

− k1P2 + k2PN

dPN

dt
= k1P2 − k2PN (1)

The model accounts for the occurrence of sustained oscillations in continuous

darkness. When taking into account the control of a parameter by light (e.g. the

maximum protein degradation rate vd in Drosophila, or the maximum rate of gene

transcription vs for Neurospora; see legend to Figure 1) the model also accounts

for entrainment of circadian oscillations by light-dark cycles and for their phase-

shifting by pulses of light. Similar results have been obtained in more detailed

models incorporating additional clock gene products such as TIM and CLOCK

[11–15].

The model of Figure 1 does not aim at representing the full, current view of

the molecular mechanism of the circadian clock in Drosophila, Neurospora or

mammals, which is known to involve a larger number of interacting proteins. Be-

cause the core model is simpler and contains a smaller number of variables, it is

particularly well suited for stochastic simulations which, as will be shown below

may require the decomposition of the deterministic mechanism into a large number

of detailed reaction steps.

3. Two Stochastic Versions of the Core Molecular Model for Circadian

Oscillations

To assess the effect of molecular noise we describe the reaction steps as stochastic

birth and death processes [18]. Numerical simulations of the temporal evolution of
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the genetic control system are performed by means of the Gillespie method [16,

17]. Besides other approaches [19–21], this method has been used to determine

the dynamics of chemical [20, 21] biochemical [22] or genetic systems [23] in

the presence of molecular noise. This method of the Monte-Carlo type associates

a probability with each reaction step; at each time step the algorithm randomly

determines the reaction that takes place according to its probability, as well as the

time interval to the next reaction step. The numbers of molecules of the differ-

ent reacting species as well as the probabilities are updated at each time step. In

the approach proposed by Gillespie [16, 17] a parameter denoted � permits the

modulation of the number of molecules present in the system. Using the Gillespie

method we performed stochastic simulations of the core model described in section

2 by considering two versions of this model.

3.1. NON-DEVELOPED VERSION OF THE STOCHASTIC MODEL

The nonlinear terms appearing in the kinetic equations (1) do not correspond to

single reaction steps. These terms rather represent compact kinetic expressions

obtained after application of quasi-steady-state hypotheses on enzyme-substrate or

gene-repressor complexes. The resulting expressions are of the Michaelis-Menten

type for enzyme reaction rates or of the Hill type for cooperative binding of the

repressor to the gene promoter. In the simplest stochastic version of the determin-

istic model of section 2, which we will refer to as the non-developed stochastic

model, we attribute to each linear or nonlinear term of the kinetic equations a

probability of occurrence of the corresponding reaction. These reactions and their

associated probability are listed in Table I. Thus reaction 1 corresponds to the

transcription of gene G into mRNA, MP; the occurrence of this reaction with a

probability w1 results in increasing by one the number of molecules of M, without

changing the number of gene molecules G which here remains equal to unity.

Reaction 4 results in increasing by one the number of P1 molecules and decreasing

by one the number of molecules of P0. The effect of the transitions brought about

by the various reactions is listed in the last column in Table I.

In contrast to the treatment presented below in section 3.2, here we do not

decompose the binding of the repressor PN to the gene promoter into successive

elementary steps, and rather retain the Hill function description for cooperative

repression. A similar approach is taken for describing degradation of mRNA (reac-

tion 2), translation of mRNA into protein (reaction 3), phosphorylation of P0 into

P1 (reaction 4) and of P1 into P2 (reaction 6), as well as dephosphorylation of P1

into P0 (reaction 5) and of P2 into P1 (reaction 7), enzymatic degradation of P2

(reaction 8), and reversible transport of P2 into and out of the nucleus (reactions 9

and 10). Reactions 2 and 4–8 are of the Michaelian type, while reactions 3, 9 and

10 correspond to linear kinetics.
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Table I. Non-detailed version of the stochastic model for circadian rhythms. The

second column lists the sequence of reactions (see section 3.1). The probability of

each reaction is given in the third column. The last column indicates the changes in the

numbers of molecules taking part in the different reactions. The sequence of reactions

corresponds to the mechanism underlying the deterministic core model governed by

equations (1) and schematized in Figure 1.

Reaction Reaction Probability of reaction Transition

number

1 G−→MP+G w1 = (vs�)
(KI�)n

(KI�)n + P n
N

MP −→ MP + 1

2 MP−→ w3 = (vm�)
MP

(Km�) + MP
MP −→ MP − 1

3 MP−→P0+MP w2 = ksMP P0 −→ P0 + 1

4 P0−→P1 w4 = (v1�)
P0

(K1�) + P0

P0 −→ P0 − 1

P1 −→ P1 + 1

5 P1−→P0 w5 = (v2�)
P1

(K2�) + P1

P0 −→ P0 + 1

P1 −→ P1 − 1

6 P1−→P2 w6 = (v3�)
P1

(K3�) + P1

P1 −→ P1 − 1

P2 −→ P2 + 1

7 P2−→P1 w7 = (v4�)
P2

(K4�) + P2

P1 −→ P1 + 1

P2 −→ P2 − 1

8 P2−→ w8 = (vd�)
P2

(Kd�) + P2
P2 −→ P2 − 1

9 P2−→PN w9 = k1P2
P2 −→ P2 − 1

PN −→ PN + 1

10 PN−→P2 w10 = k2PN
P2 −→ P2 + 1

PN −→ PN − 1
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Table II. Detailed version of the stochastic model for circadian rhythms. The second column

lists the sequence of reaction steps (see section 3.2). The probability of each reaction is given in

the third column. The sequence of steps corresponds to the 10 reactions of the non-developed

version of the model listed in Table I, and thus represents a detailed stochastic version of the

core deterministic model governed by equations (1) and schematized in Figure 1. In the column

listing the probability of occurrence of the detailed reaction steps, kinetic constants related to

bimolecular reactions are scaled by � [16, 17]

Reaction Reaction step Probability of reaction step

number

1a G + PN
a1

−→ GPN w1 = a1 × G × PN /�

1b GPN
d1

−→ G + PN w2 = d1 × GPN

1c GPN + PN
a2

−→ GPN2 w3 = a2 × GPN × PN /�

1d GPN2
d2

−→ GPN + PN w4 = d2 × GPN2

1e GPN2 + PN
a3

−→ GPN3 w5 = a3 × GPN2 × PN /�

1f GPN3
d3

−→ GPN2 + PN w6 = d3 × GPN3

1g GPN3 + PN
a4

−→ GPN4 w7 = a4 × GPN3 × PN /�

1h GPN4
d4

−→ GPN3 + PN w8 = d4 × GPN4

1i [G, GPN,GPN2,GPN3]
vs

−→ MP w9 = vs × (G + GPN + GPN2 + GPN3)

2a MP + Em
km1
−→ Cm w10 = km1 × MP × Em/�

2b Cm
km2
−→ MP + Em w11 = km2 × Cm

2c Cm
km3
−→ Em w12 = km3 × Cm

3 MP
ks

−→ MP + P0 w13 = ks × MP

4a P0 + E1
k11
−→ C1 w14 = k11 × P0 × E1/�

4b C1
k12
−→ P0 + E1 w15 = k12 × C1

4c C1
k13
−→ P1 + E1 w16 = k13 × C1

5a P1 + E2
k21
−→ C2 w17 = k21 × P1 × E2/�

5b C2
k22
−→ P1 + E2 w18 = k22 × C2

5c C2
k23
−→ P0 + E2 w19 = k23 × C2

6a P1 + E3
k31
−→ C3 w20 = k31 × P1 × E3/�
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Table II. Continued

Reaction Reaction step Probability of reaction step

number

6b C3
k32
−→ P1 + E3 w21 = k32 × C3

6c C3
k33
−→ P2 + E3 w22 = k33 × C3

7a P2 + E4
k41
−→ C4 w23 = k41 × P2 × E4/�

7b C4
k42
−→ P2 + E4 w24 = k42 × C4

7c C4
k43
−→ P1 + E4 w25 = k43 × C4

8a P2 + Ed
kd1
−→ Cd w26 = kd1 × P2 × Ed/�

8b Cd
kd2
−→ P2 + Ed w27 = kd2 × Cd

8c Cd
kd3
−→ Ed w28 = kd3 × Cd

9 P2
k1

−→ PN w29 = k1 × P2

10 PN
k2

−→ P2 w30 = k2 × PN

3.2. DEVELOPED VERSION OF THE STOCHASTIC MODEL

An alternative approach consists in developing explicitly the molecular regulatory

mechanism schematized in Figure 1 into a sequence of detailed reaction steps.

These steps are listed in Table II, together with their probability of occurrence

denoted wi (i = 1,. . . 30). The full sequence of steps listed in Table II will be

referred to as the developed version of the stochastic model.

Reversible binding of the repressor to the gene promoter embedded into the

transcription reaction 1 in the non-developed model (see Table I) is decomposed

here into 8 steps (denoted 1a to 1h in Table II) in the case of cooperative binding

of four molecules of PN to the gene promoter G. Reaction 2 of Table I, which

represents the enzymatic degradation of mRNA, is decomposed here into steps 2a–

2c in Table II; these three steps represent, respectively, binding of MP to enzyme

Em to form complex Cm, dissociation of Cm, and catalytic decomposition of Cm.

Likewise, each of the other enzymatic processes, represented in Table I by a single,

global reaction, is now represented by three steps, while the reactions characterized

by linear kinetics remain represented by a single step.
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Figure 2. Sustained oscillations predicted by the deterministic and stochastic versions of the

core model for circadian rhythms. (A) Limit cycle obtained in the 5-variable deterministic

model governed by equations (1), shown as a projection onto the PN − MP phase plane.

(B) Sustained oscillations predicted by the deterministic model, corresponding to the limit

cycle shown in panel A. (C) and (D) Limit cycle and sustained oscillations obtained for the

non-developed version of the stochastic model (Table I). (E) and (F) Limit cycle and sustained

oscillations obtained for the developed version of the stochastic model (Table II). The results

in panels (C)-(F) are obtained numerically by means of the Gillespie method [16, 17]. As

in the following figures stochastic simulations were performed for 2500 h, which corres-

ponds to some 100 successive cycles. In (C) and (E) the deterministic limit cycle obtained

in corresponding conditions (see panel A) is shown as a thick white curve; concentrations are

transformed into numbers of molecules through multiplication by parameter �, which is equal

to 100. Other parameter values are listed in Table III.

The effect of the transitions associated with each one of the detailed reaction

steps (not shown in Table II) is similar to that listed in Table I: at each step, the

number of molecules of species produced increases by one while the number of

molecules consumed (or transported in the case of exchanges between the cytosol

and the nucleus) decreases by one. In the case of transcription (step 1i) and trans-

lation (step 3), the number of gene and mRNA molecules, respectively, does not

change in the course of the reaction.

4. Effect of Molecular Noise on Circadian Oscillations

Before dealing with the effect of molecular noise, we have to examine the pre-

dictions of the deterministic model governed by equations (1). Typical circadian

oscillations predicted by this model are shown in Figure 2B. These oscillations

correspond to the evolution toward a limit cycle (Figure 2A) shown here as a
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Table III. Parameter values used for numerical simulations of the deterministic model and of its

non-developed and developed stochastic versions in Figures 2–5. The reaction numbers refer to

the corresponding lines in Tables I and II. In the last two columns, ‘mol’ means molecules. In

the developed stochastic model, when varying � to modify the numbers of molecules involved in

the circadian oscillatory mechanism, we wish to keep the number of gene promoter (G) equal to

unity without altering the relative weights of the different probabilities wi , so as to keep dynamic

behavior consistent with that predicted by the corresponding deterministic model governed by

equations (1). The numbers of enzyme molecules and the kinetic constants related to the steps

involving G are therefore multiplied by � in the last column that lists the parameter values for

the detailed model. In the same column, to allow for cooperativity of the repression process, the

parameters aj and dj (j = 1, . . . , 4) which appear in the detailed steps of reaction 1 (steps 1a–1h

in Table II) are chosen so that the dissociation constant Kj = dj /aj (with K4
I

= �4
j=1

Kj )

decreases as the number of molecules of PN bound to the promoter increases

Reaction Deterministic Non-developed Developed version of

number model version of the the stochastic model

stochastic model

1 vs = 0.5 nMh−1 vs = 0.5 mol h−1 vs = (0.5 × �) mol h−1,

KI = 2 nM KI = 2 mol a1 = � mol−1 h−1,

n = 4 n = 4 d1 = (160 × �) h−1,

a2 = (10 × �) mol−1 h−1,

d2 = (100 × �) h−1,

a3 = (100 × �) mol−1 h−1,

d3 = (10 × �) h−1,

a4 = (100 × �) mol−1 h−1,

d4 = (10 × �) h−1

2 vm = 0.3 nMh−1 vm = 0.3 mol h−1 km1 = 165 mol−1 h−1,

Km = 0.2 nM Km = 0.2 mol km2 = 30 h−1, km3 = 3 h−1,

Emtot = Em + Cm = (0.1 × �) mol

3 ks = 2.0 h−1 ks = 2.0 h−1 ks = 2.0 h−1

4 v1 = 6.0 nMh−1 v1 = 6.0 mol h−1 k11 = 146.6 mol−1 h−1

K1 = 1.5 nM K1 = 1.5 mol k12 = 200 h−1, k13 = 20 h−1

E1tot = E1 + C1 = (0.3 × �) mol

5 v2 = 3.0 nMh−1 v2 = 3.0 mol h−1 k21 = 82.5 mol−1 h−1,

K2 = 2.0 nM K2 = 2.0 mol k22 = 150 h−1, k23 = 15 h−1,

E2tot = E2 + C2 = (0.2 × �) mol

6 v3 = 6.0 nMh−1 v3 = 6.0 mol h−1 k31 = 146.6 mol−1 h−1,

K3 = 1.5 nM K3 = 1.5 mol k32 = 200 h−1, k33 = 20 h−1,

E3tot = E3 + C3 = (0.3 × �) mol

7 v4 = 3.0 nMh−1 v4 = 3.0 mol h−1 k41 = 82.5 mol−1 h−1,

K4 = 2.0 nM K4 = 2.0 mol k42 = 150 h−1, k43 = 15 h−1,

E4tot = E4 + C4 = (0.2 × �) mol

8 vd = 1.5 nMh−1 vd = 1.5 mol h−1 kd1 = 1650 mol−1 h−1,

Kd = 0.1 nM Kd = 0.1 mol kd2 = 150 h−1, kd3 = 15 h−1,

Edtot = Ed + Cd = (0.1 × �) mol

9 k1 = 2.0 h−1 k1 = 2.0 h−1 k1 = 2.0 h−1

10 k2 = 1.0 h−1 k2 = 1.0 h−1 k2 = 1.0 h−1
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Figure 3. Robust circadian oscillations produced by the non-developed (B) and developed (D)

versions of the stochastic model. The associated limit cycle trajectories are shown in (A) and

(C), respectively, together with the deterministic limit cycle (thick white curve) obtained in

corresponding conditions. Parameter values are as in Figure 2, except � = 50.

projection onto the plane formed by the concentrations of mRNA (MP ) and nuclear

protein (PN ).

Turning to the effect of noise, we now consider the dynamic behavior of the

two stochastic versions of the core model for circadian rhythms. Shown in Figures

2C,D and 2E,F are the limit cycles and sustained oscillations of mRNA and nuclear

regulatory protein obtained with the non-developed and developed versions of the

stochastic model, respectively. For the sake of comparison, we have reproduced as

a thick white trajectory in panels C and E of Figure 2 the limit cycle obtained in

panel A for the deterministic model. The stochastic curves in Figure 2 have been

obtained for � = 100. For this value, the numbers of molecules of nuclear protein

and mRNA vary in the range 50–800 and 0–200, respectively.

A first conclusion that can be drawn from the data presented in Figure 2 is that

the circadian oscillatory behavior predicted by the deterministic model (panel B) is

recovered when using either one of the two stochastic models for circadian rhythms

(panels D and F). The mere effect of molecular noise is to increase the effective

thickness of the limit cycle (panels C and E). A second conclusion is that both

for the time series and for the limit cycle trajectory, the two stochastic versions of

the model yield similar results. The same conclusions are drawn when considering

stronger molecular noise at lower values of �, e.g. � = 50 in Figure 3. There the

numbers of molecules of nuclear protein and mRNA oscillate in the range 20–500

and 0–100, respectively. Robust circadian oscillations are still produced in both
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versions of the stochastic model. The increased thickness of the limit cycle appears

to be slightly greater in the case of the developed model (compare panels A and C

in Figure 3).

5. Bifurcations and Molecular Noise

Much as in the case of the deterministic model, critical parameter values separate

for the stochastic models regions in which the system undergoes sustained oscil-

lations from regions where it evolves toward a stable steady state. Thus, for the

deterministic model, sustained oscillations only occur in a domain bounded by two

critical, bifurcation values of parameter vd which measures the maximum rate of

protein degradation. In the case of Figure 2A,B, sustained oscillations disappear

below a value close to vd = 0.6 nMh−1. The stochastic simulations of both the

non-developed (Figure 4) and developed (Figure 5) versions of the core model for

circadian rhythms indicate that such bifurcation points also exist in the presence

of molecular noise, even if the precise critical value of the control parameter may

be difficult to localize because of the increased effect of noise near the bifurcation

point (see panels C and E in Figures 4 and 5). Well below (Figures 4A,B and 5A,B)

or above (Figures 4G,H and 5G,H) the bifurcation point, the genetic regulatory

system evolves either to a stable steady state or to sustained oscillations of the

limit cycle type, respectively. The behavior observed just above the bifurcation

point (Figures 4E,F and 5E,F) is noisy but clearly differs from the low-amplitude

fluctuations that occur around a stable steady state (Figures 4A,B and 5A,B).

Here again, for comparison, we have shown as a thick white line or point the

attractor to which the deterministic model evolves in the phase plane. In Figures

4 and 5, this attractor is a stable steady state in (B) and (D), and a stable limit

cycle in (F) and (H). Note that due to the proximity from the bifurcation point, the

amplitude of the limit cycle is much reduced in (F), while damped oscillations (not

shown) occur around the stable steady state in (D). This may explain why, in the

presence of noise, dynamic behavior in (C) and (D) bears a strong resemblance to

that observed in (E) and (F).

6. Discussion

The goal of this paper was to compare deterministic and stochastic models for

circadian oscillations. In the presence of significant molecular noise, when the

numbers of reacting molecules are small, stochastic simulations are needed. By

means of such simulations we have shown that a core molecular mechanism for

circadian rhythms based on negative autoregulation of gene expression can produce

robust circadian oscillations, closely related to those obtained with the determin-

istic model, already when the maximum number of protein and mRNA molecules

is in the hundreds or tens, respectively. The mean numbers of these molecules in

the course of oscillations are smaller, because the levels of both protein and mRNA
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Figure 4. Effect of the proximity from a bifurcation point on the effect of molecular noise in

the non-developed version of the stochastic model for circadian rhythms. The different panels

are established for increasing values of parameter vd (indicated in mol h−1) that measures

the maximum rate of protein degradation (see Figure 1 and Table I). The left panels represent

the temporal evolution of the number of nuclear protein or mRNA molecules, while the right

panels show the corresponding evolution in the phase plane. (A) and (B) Fluctuations around

a stable steady state. (C) and (D) Fluctuations around a stable steady state for a value of vd

close to the bifurcation point which lies around 0.6 mol h−1. Damped oscillations occur in

these conditions when the system is displaced from the stable steady state. In (B) and (D) the

white dot represents the stable steady state predicted by the deterministic version of the model

in corresponding conditions. (E) and (F) Oscillations observed close to the bifurcation point.

(G) and (H) Oscillations observed further from the bifurcation point, well into the domain of

sustained oscillations. In (F) and (H) the thick white curve represents the limit cycle predicted

by the deterministic version of the model governed by equations (1), in corresponding condi-

tions, for the indicated values of vd expressed in nMh−1. The smaller amplitude of the limit

cycle in (F) as compared to the limit cycle in (H) is associated with an increased influence of

molecular noise (compare panels E and G). The curves are obtained by means of the Gillespie

algorithm applied to the model of Table I. Parameter values are listed in Table III.
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Figure 5. Effect of the proximity from a bifurcation point on the effect of molecular noise

in the developed version of the stochastic model for circadian rhythms. The different panels

are established for increasing values of parameter kd3 (indicated in h−1) that measures the

maximum rate of protein degradation (see step 8c in Table II). The significance of the curves

is similar to that of the corresponding panels established in Figure 4 for the non-developed

version of the stochastic model. The curves are obtained as in Figure 4 by means of the

Gillespie algorithm applied to the model of Table II. Parameter values are listed in Table III.
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can go down to very low values at the trough of the oscillations. Thus, in the cases

considered in Figures 2F and 3D, the mean number of mRNA (nuclear protein)

molecules is 67 (368) and 34 (194), respectively. It is only at very low numbers

of molecules of protein and mRNA (reached, for example, for � = 10) that noise

begins to obliterate circadian rhythmicity [24].

The robustness of circadian oscillatory behavior in the presence of molecular

noise has been quantified elsewhere by determining the half-time of the auto-

correlation function and the standard deviation of the period of the oscillations

[24]. Among the factors that appear to increase the robustness of circadian os-

cillations with respect to molecular noise are the cooperativity of repression [24],

periodic forcing by light-dark cycles [24], and the formation of complexes between

regulatory proteins (D. Forger and C. Peskin, personal communication).

A previous study of models based on negative autoregulation of gene expression

reported a lack of robustness of circadian oscillations with respect to molecular

noise [25]. The difference with respect to the results presented here and elsewhere

[24] is likely due to the lower values considered for bimolecular rate constants

characterizing the association of the repressor to the gene promoter. The authors of

the contrasting report [25] used values bounded by the classical diffusion limit

of 108 M−1s−1, while we chose larger values, in agreement with experimental

observations that pertain to repressor binding to gene promoters [26]. However,

we have obtained robust oscillations even at values of bimolecular rate constants

lower than those considered in Figures 2 and 3.

We also compared the predictions of two stochastic versions of the core, 5-

variable deterministic model for circadian oscillations. In the more compact ver-

sion, we did not develop into elementary steps the enzymatic reactions described

by Michaelis-Menten kinetics, nor the cooperative binding of the repressor to the

gene promoter, described by a Hill function. The probability of occurrence of each

of these reactions was taken as a product of a kinetic constant times the nonlinear

function (see Table I), but the numbers of molecules in these expressions were

allowed to vary in a stochastic manner. A similar approach has been followed

in stochastic simulations of a model for intracellular Ca2+ oscillations [27]. In a

second version, the reactions described by these nonlinear rate expressions were

developed into a sequence of elementary steps. The non-developed version of the

stochastic model thus contains 10 reaction steps (Table I), while the developed

version contains 30 steps (Table II). Stochastic simulations of the two versions are

in agreement both with respect to circadian oscillatory behavior (see Figures 2 and

3) and to the evolution toward a stable steady state when the value of the control

parameter lies outside the critical range for sustained oscillatory behavior (Figures

4 and 5).

The results obtained here and in a previous study [24] with a core molecular

model for circadian oscillations, as well as those obtained with a more exten-

ded model for circadian rhythms in Drosophila incorporating the formation of a

complex between the PER and TIM proteins (D. Forger and C. Peskin, personal
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communication, and Ref. 28, validate the predictions and the use of determin-

istic models for circadian rhythms. Moreover the present simulations indicate that

when a stochastic approach is needed, the non-developed and developed stochastic

versions of the deterministic model yield largely similar results.
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