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We consider a model for a network of phosphorylation}dephosphorylation cycles coupled
through forward and backward regulatory interactions, such that a protein phosphorylated in
a given cycle activates the phosphorylation of a protein by a kinase in the next cycle as well as
the dephosphorylation of a protein by a phosphatase in a preceding cycle. The network is
cyclically organized in such a way that the protein phosphorylated in the last cycle activates
the kinase in the "rst cycle. We study the dynamics of the network in the presence of both
forward and backward coupling, in conditions where a threshold exists in each cycle in the
amount of protein phosphorylated as a function of the ratio of kinase to phosphatase
maximum rates. We show that this system can display sustained (limit-cycle) oscillations in
which each cycle in the pathway is successively turned on and o!, in a sequence resembling the
fall of a series of dominoes. The model thus provides an example of a biochemical system
displaying the dynamics of dominoes and clocks (Murray & Kirschner, 1989). It also shows
that a continuum of clock waveforms exists of which the fall of dominoes represents a limit.
When the cycles in the network are linked through only forward (positive) coupling, bistability
is observed, while in the presence of only backward (negative) coupling, the system can display
multistability or oscillations, depending on the number of cycles in the network. Inhibition or
activation of any kinase or phosphatase in the network immediately stops the oscillations by
bringing the system into a stable steady state; oscillations resume when the initial value of the
kinase or phosphatase rate is restored. The progression of the system on the limit cycle can
thus be temporarily halted as long as an inhibitor is present, much as when a domino is held in
place. These results suggest that the eukaryotic cell cycle, governed by a network of phos-
phorylation}dephosphorylation reactions in which the negative control of cyclin-dependent
kinases plays a prominent role, behaves as a limit-cycle oscillator impeded in the presence of
inhibitors. We contrast the case where the sequence of domino-like transitions constitutes the
clock with the case where the sequence of transitions is passively coupled to a biochemical
oscillator operating as an independent clock.
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1. Introduction

A discussion of the dynamics of the cell division
cycle led Murray & Kirschner (1989) to publish
a seminal paper entitled &&Dominoes and clocks:
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the union of two views of the cell cycle.'' In this
paper, the authors compared the operation of
a continuous biochemical oscillator controlling
a sequence of biochemical steps with the sequen-
tial falling of dominoes in a network of biochemi-
cal reactions. The latter view often corresponds
to verbal descriptions of chains of biochemical
( 2001 Academic Press
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events which appear to follow each other sequen-
tially, one step leading to the next after some
threshold is passed. When the sequence occurs in
a repetitive manner, the system behaves as
a clock but the question arises as to whether
it still corresponds to a continuous (limit-cycle)
oscillator.

The goal of the present paper is to unify the
two types of dynamics (dominoes vs. clocks) by
means of a theoretical model built speci"cally for
this purpose. Thus, we consider a network of
biochemical reactions organized in a cyclical
manner, and incorporate thresholds allowing the
sequential progression from one step to the next
in this network. We investigate the conditions in
which such a cyclical network of biochemical
reactions operates as a limit-cycle oscillator.

To include thresholds in a simple, straightfor-
ward manner, we consider a series of covalent
modi"cation (e.g. phosphorylation}dephospho-
rylation) cycles operating in conditions where the
modifying enzymes are saturated by their sub-
strate. Such conditions lead to the phenomenon
of zero-order ultrasensitivity (Goldbeter &
Koshland, 1981, 1982) by which the fraction of
protein modi"ed at steady state varies in a sigmo-
idal manner, characterized by a steep threshold,
as the ratio of maximum rates of phosphoryla-
tion and dephosphorylation progressively
increases.

In the network model, phosphorylation}
dephosphorylation cycles are coupled through
regulatory interactions and endowed with thre-
shold-like properties. Each phosphorylated pro-
tein in the network activates the phosphorylation
of the next element (positive, forward regulation)
as well as the dephosphorylation of a previous
protein in the network (negative, backward regu-
lation). The protein phosphorylated in the last
step activates protein phosphorylation in the "rst
step of the network. We show that this hypotheti-
cal model can display the dynamics of dominoes
and clocks, as well as coexistence between
multiple steady states or between an oscillatory
regime and a steady state.

In Section 2, we present the abstract model of
a cyclically organized network of phosphoryla-
tion}dephosphorylation cycles coupled through
forward and backward regulatory interactions.
The oscillatory behavior of the model is analysed
in Section 3. The e!ect of an inhibitor arresting
the oscillations is considered in Section 4. In
Section 5, we analyse the dynamics in the
presence of only backward or forward coupling
between the various phosphorylation}dephos-
phorylation cycles of the network. We show that
in the latter case bistability can occur instead of
oscillations, while in the former case either multi-
stability or oscillations are possible, depending
on the number of cycles in the network.

The model provides an illustration of a case
where the two views of the oscillatory dynamics
of a biochemical reaction network can be uni"ed:
the system evolves toward a limit cycle (clock)
but retains properties of domino-like transitions
as the successive phases of the oscillations pro-
gressively unfold in a stepwise manner. The addi-
tion of a kinase or phosphatase inhibitor directly
leads to the arrest of the clock and amounts to
holding the dominoes in place; the fall of the
dominoes and the oscillations resume as soon as
this negative control is removed.

It is important to distinguish the case where
the sequence of domino-like transitions itself op-
erates as a clock from the case where the se-
quence of transitions is passively linked to an
independent clock. To clarify the di!erence be-
tween the two situations, we consider in Section
6, for illustrative purposes, a model in which
a linear sequence of phosphorylation}dephos-
phorylation cycles coupled through regulatory
interactions is driven by an independent oscil-
lator producing repetitive pulses of cyclic AMP.

2. Model for a Cyclically Organized Network of
Phosphorylation+dephosphorylation Cycles

The model considered is schematized in Fig. 1.
It consists of a number N of covalent modi"ca-
tion cycles in which a protein Y

i
is transformed

(phosphorylated) into the form X
i
by an enzyme

E
i
(a kinase) of maximum rate <

Mi
and Michaelis

constant K
i
, while the reverse transformation of

X
i
into Y

i
is catalysed by an enzyme E@

i
(a phos-

phatase) of maximum rate <@
Mi

and Michaelis
constant K@

i
. The modi"cation reactions involve

cofactors (see Fig. 1, right panel) whose concen-
trations will be considered as remaining constant.
The forms X

i
and Y

i
may represent active and

inactive forms of a protein, respectively. We shall



FIG. 1. Scheme of the model for a network of coupled
phosphorylation}dephosphorylation cycles (left panel) dis-
playing the dynamics of dominoes and clocks. The network
represented contains four cycles in which protein Y

i
is phos-

phorylated into the form X
i
. In each cycle cofactors are

involved (right panel): phosphorylation by a kinase is ac-
companied by hydrolysis of ATP (A) into ADP (B), while
dephosphorylation by a phosphatase is accompanied by
consumption of H

2
O (C) and production of inorganic phos-

phate, P
*
(D). The model applies to other modes of covalent

modi"cation, and also to the case where one or more species
X

i
represent dephosphorylated forms of these proteins. The

various cycles of the network are coupled through forward
( ) and backward (} } }) regulatory interactions. Thus, we
assume that X

i
activates both the enzyme converting

Y
i`1

into X
i`1

, and the enzyme converting X
i~2

into Y
i~2

.
These cyclically organized regulatory interactions give rise
to oscillatory behavior. Because of its cyclical structure, the
model could be referred to as the circulator.
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illustrate the results mostly for a network of four
such covalent modi"cation cycles (N"4), but
have studied the e!ect of increasing the number
of cycles in the network.

Each form X
i

activates the next step in the
network, i.e. the reaction transforming Y

i`1
into

X
i`1

. The cyclical nature of the network arises
from the hypothesis that in a network containing
N interconversion steps, the product of the last
step, X

N
, activates the conversion of Y

1
into X

1
.

With only such positive regulatory interactions,
no oscillations are possible and only bistability is
observed: either the system is turned on, or it
remains turned o! (see Section 5). To allow for
the possibility of periodic behavior we have in-
corporated the hypothesis that each species
X

i
can exert a negative feedback on a preceding

cycle in the network. Thus we assume, for
example, that species X

i`2
activates the enzyme

that transforms X
i
back into the form Y

i
. For the

two types of regulation, we shall assume that the
enzymes possess a residual activity in the absence
of their activator (case of non-essential activa-
tion). The network model thus de"ned could be
referred to as the circulator, to underline its cycli-
cal organization.

We shall denote by X
i
the fraction of protein

X
i
. Assuming that the complexes of X

i
and

Y
i
with the modifying enzymes remain negligible,

X
i

is thus de"ned by X
i
"[X

i
]/([X

i
]#[Y

i
]),

with >
i
"1!X

i
. Because of the symmetrical

nature of the scheme considered, the time evolu-
tion of the fractions X

i
is given in a compact form

by the following vectorial equation:

dX
i

dt
"<

i

(1!X
i
)

K
i
#(1!X

i
)
!<@

i

X
i

K@
i
#X

i

(i"1,2,N)

(1)

with

<
i
"<

Mi A1#a
i

X
i~1

K
ai
#X

i~1
B,

<@
i
"<@

Mi A1#b
i

X
i`2

K
bi
#X

i`2
B. (2)

Owing to the cyclical nature of the network, in
eqns (2), X

i~1
,X

N
for i"1, X

i`2
,X

1
for

i"N!1, and X
i`2

,X
2

for i"N. Indeed,
X

i~1
and X

i`2
refer, respectively, to the inter-

mediates located one step before and two steps
after X

i
in the cyclical network.

In the above equations, a
i

and b
i

represent
coe$cients measuring the strength of regulatory
coupling in the network: the maximum activity of
the modifying enzymes is multiplied by a factor
(1#a

i
) or (1#b

i
) in the presence of such a regu-

lation when the e!ector is much larger than the
activation constant K

ai
or K

bi
. Parameters <

Mi
,

K
i
, <@

Mi
, K@

i
are normalized by division through

the total amount of the corresponding substrate
protein.

3. Unifying the Dynamics of Dominoes
and Clocks

A key feature of the model considered is that
thresholds may arise in each of the covalent
modi"cation cycles interconverting Y

i
into X

i
.

The dependence of the steady-state fraction of
X

i
as a function of the ratio <

i
/<@

i
of maximum



FIG. 2. Threshold in a single phosphorylation}dephos-
phorylation cycle. Shown is the steady-state fraction of
phosphorylated protein X

i
as a function of the ratio of

maximum rates of phosphorylation (<
i
) and dephosphoryla-

tion (<@
i
). When the reduced Michaelis constants of the

kinase (K
i
) and phosphatase (K@

i
) are much smaller than

unity (e.g. K
i
"K@

i
"0.01), the curve presents a sharp thre-

shold due to the phenomenon of zero-order ultrasensitivity
(Goldbeter & Koshland, 1981). Such a threshold is not
observed at higher values of the reduced Michaelis constants
(e.g. K

i
"K@

i
"1).
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rates becomes highly sigmoidal when the reduced
Michaelis constants K

i
and K@

i
are much smaller

than unity. Thus, the sharp threshold seen for
K

i
"K@

i
"0.01 disappears when K

i
"K@

i
"1

(see Fig. 2). We shall make use of this property,
called zero-order ultrasensitivity (Goldbeter
& Koshland, 1981, 1982), to generate thresholds
in each step of the network of Fig. 1. In the
following, we shall use the values K

i
"K@

i
"0.01

unless indicated otherwise.
In plotting the curves yielding the steady-state

fraction of X
i
as a function of the ratio <

i
/<@

i
we

did not consider explicitly how this ratio varies
with the regulatory interactions described by
eqns (2). In the present model we "rst consider
the case (see Fig. 1 and Section 2) where each
species X

i
activates the next transformation of

Y
i`1

into X
i`1

as well as the reverse transforma-
tion, two cycles earlier in the network, of
X

i~2
into Y

i~2
. The latter assumption introduces

a delay necessary for the occurrence of sustained
oscillations; when X

i
activates the transformation

of X
i~1

into Y
i~1

in the preceding cycle, only
damped oscillations occur. In the following, we
will focus on the time evolution of the various
species X

i
. Oscillations in X

i
are always
accompanied by periodic variation in the
corresponding >

i
species, according to the

conservation relation >
i
"1!X

i
.

For appropriate parameter values (see below)
the network of phosphorylation}dephosphoryla-
tion cycles shown in Fig. 1 behaves both as
a limit-cycle oscillator and as a repetitive se-
quence of domino-like transitions. Starting from
the immediate vicinity of the unstable steady
state, we see that the four variables of the system
are successively turned on and o! in an abrupt
manner [Fig. 3(a)]. In the phase plane (X

1
, X

2
)

these sustained oscillations correspond to a limit
cycle; the nearly square shape of this trajectory
[Fig. 3(b)] is due to the fact that the rise and
decline of one variable occur at nearly constant
values of the preceding or following variable. In
the absence of very sharp thresholds, e.g. at the
higher values K

i
"K@

i
"0.03 which are close

to the upper limit of the oscillatory domain [see
Fig. 6(a)], oscillations still occur but are much
smoother [Fig. 3(c)] and correspond to a more
rounded limit cycle [Fig. 3(d)].

The conditions in which sustained oscillations
occur in the model can be determined by means
of bifurcation diagrams established with respect
to one or two parameters. Shown in Fig. 4 is
a bifurcation diagram representing the steady
state (stable or unstable) and the envelope of
oscillations as a function of the ratio of maximum
rates r"<

M
/<@

M
in the fully symmetrical case

where all phosphorylation}dephosphorylation
cycles are characterized by the same set of para-
meter values. The bifurcation diagram indicates
that sustained oscillations occur in a domain
corresponding to the range of steep increase in
the steady-state fractions X

i
(i"1,2, 4); the do-

main of instability of the steady state (dashed
line) is bounded by two critical values of para-
meter r which correspond to subcritical Hopf
bifurcations. Near the bifurcation points a do-
main of hard excitation indeed exists in which
a stable steady state coexists with a stable limit
cycle.

The dynamic consequences of hard excitation
are illustrated in Fig. 5. Starting at the stable
steady state (where X

1
"X

2
"X

3
"X

4
in the

symmetrical case considered) we increase at time
t"20 parameter<

M1
from 0.85 up to 2 during 10

units of time before returning <
M1

to its initial



FIG. 3. Unifying the dynamics of dominoes and clocks. Sustained oscillations obtained for K"K@"0.01 and 0.03 are
shown in (a) and (c), respectively. The corresponding limit cycles in the (X

1
, X

2
) plane are shown in (b) and (d). The oscillations

in (a) resemble a recurrent sequence of rising and falling dominoes, while the oscillations in (c) are much smoother.
Consequently, the limit cycle in (d) corresponding to the latter oscillations is much rounder than the square limit cycle in (b)
associated with the oscillations in (a). The results are obtained by numerical integration of eqns (1) for a network containg four
phosphorylation}dephosphorylation cycles, as shown in Fig. 1. Other parameter values (corresponding to the symmetrical
case) are a

i
"b

i
"1, K

ai
"K

bi
"0.5, <

Mi
"<@

Mi
"1 (in the present and following "gures, these normalized maximum rates

are expressed in arbitrary time units~1), for i"1,2, 4. Initial conditions: X
1
"0.51, X

2
"X

3
"X

4
"0.5; transients have

been suppressed in panel (c).
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value [Fig. 5(a)]. As a result of this transient
increase in the maximum phosphorylation rate in
the "rst cycle of the sequence the system switches
to a regime of sustained oscillations and con-
tinues to oscillate despite the return of parameter
<
M1

to its initial value. The reverse transition is
illustrated in Fig. 5(b) where the system starts in
the oscillatory state. At time t"20 parameter
<
M1

is decreased transiently from 0.85 down to
0.5, before being returned to its initial value at
time t"30. In spite of the transient nature of the
parameter change, the system has permanently
switched toward the stable steady state. The
transitions illustrated in panels (a) and (b) of
Fig. 5 are direct consequences of the coexistence
between a stable steady state and a stable limit
cycle in conditions of hard excitation.

Stability diagrams established for di!erent
pairs of parameters are shown in Fig. 6. In each
diagram a domain of sustained oscillations is
indicated, besides domains in which the network
evolves toward a stable steady state. A domain of
hard excitation sometimes exists near the bound-
ary of the oscillatory domain, as shown in (b) and
(c). Panels (a) and (c) show that for sustained
oscillations to occur, the values of the reduced



FIG. 4. Bifurcation diagram showing the domain of sus-
tained oscillations as a function of the ratio of kinase to
phosphatase maximum rates, in a network containing four
phosphorylation}dephosphorylation cycles with both for-
ward and backward coupling. The curves show the stable
(***) or unstable (-------) steady state, as well as the
envelope of the oscillations, as a function of the ratio
r"<

M
/<@

M
which is taken as identical in the four cycles of

the network. At both extremities of the oscillatory domain
unstable limit cycle oscillations (dashed line) separate the
stable oscillations from the stable steady state. Parameter
values are as in Fig. 3(a). The ratio r"<

M
/<@

M
is varied by

changing <@
M

at the "xed value <
M
"1.

FIG. 5. Dynamic consequences of the coexistence between
a stable steady state and stable oscillations (hard excitation).
(a) Transition from the stable steady state to the stable
oscillatory regime following a transient perturbation in
parameter<

M1
which is increased from 0.85 to 2 from t"20

to 30 and is thereafter returned to its initial value. (b)
Transition from the stable oscillatory regime to the stable
steady state following a transient perturbation in parameter
<
M1

which is decreased from 0.85 to 0.5 from t"20 to 30
before being returned to its initial value. As can be seen in
Fig. 4, a stable steady state and a stable limit cycle coexist
when<

M1
"0.85. Other parameter values are as in Fig. 3(a),

with <
Mi

"0.85 (i"2,2, 4). Initial conditions are (a)
X

i
"0.053 (i"1,2, 4), (b) X

1
"0.023, X

2
"0.044,

X
3
"0.822, X

4
"0.279.
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Michaelis constants K
i
"K@

i
"K must be su$-

ciently small, i.e. the transition curves for each
fraction of phosphorylated protein must be su$-
ciently steep (see Fig. 2). The diagram of panel (c)
extends the results of Fig. 4 by showing the exist-
ence of a range of values of r"<

M
/<@

M
in which

sustained oscillations occur. Panel (b) indicates
that in the symmetrical case, the value of b must
exceed the value of a for oscillations to occur.

Sustained oscillations in the phosphoryla-
tion}dephosphorylation network model can also
be observed in asymmetrical conditions, as
shown in Fig. 7(a) where each cycle of phos-
phorylation}dephosphorylation is characterized
by di!erent values of parameters <

M
and a. As

a result, the amplitude and waveform di!ers for
each of the variables of the system. It is possible
to uncouple one of the variables from the rest of
the system and to nevertheless obtain oscillations
in all the other variables of the network. Thus,
Fig. 7(b) shows the behavior of the network
model of Fig. 1 when a

1
"b

1
"0, i.e. when X

1
is

uncoupled from the rest of the network; see eqns
(1) and (2). The reason why we still observe oscil-
lations is due to the fact that the link between
X

4
and X

2
is not interrupted, because of the
assumption that X
i`1

activates the transforma-
tion of Y

i~1
into X

i~1
: the backward regulation

jumps over one step in the network of phos-
phorylation}dephosphorylation cycles.

The model can display a rich repertoire of
dynamic behavior which will only brie#y be men-
tioned here. Besides the type of oscillations
shown in Fig. 3, more complex patterns of oscilla-
tory behavior can indeed occur in the presence of
forward and backward coupling when the net-
work contains more than six phosphorylation}
dephosphorylation cycles. Thus, for N"7,
depending on the value of b'a, oscillations can
be found in which peaks in X

1
, X

5
, X

2
, X

6
, X

3
, X

7
,



FIG. 6. Two-parameter diagrams showing the domain of
sustained oscillations in a network containing four phos-
phorylation}dephosphorylation cycles with both forward
and backward coupling. The diagrams are obtained in the
symmetrical case where K

i
"K, K

ai
"K

a
, K

bi
"K

b
, a

i
"a,

b
i
"b, <

Mi
"<

M
, <@

Mi
"<@

M
(i"1,2, 4), for the parameter

values of Fig. 3(a). Panels (a)} (c) show the domains of
limit-cycle oscillations and of stable steady states (SSS) in
the parameter planes K

a
"K

b
vs. K, a vs. b, K vs.

r"<
M
/<@

M
, respectively. In panels (b) and (c) a domain of

hard excitation (HE) in which a stable steady state coexists
with a stable limit cycle sometimes exists near the bound-
aries of the oscillatory domain (see Fig. 4). Parameter r in (c)
is varied through <@

M
as in Fig. 4.

FIG. 7. Sustained oscillations in asymmetrical conditions,
in the presence of both forward and backward coupling.
Parameter values are: (a) <

M1
"0.6, <

M2
"1.2, <

M3
"0.8,

<
M4

"1.4, a
1
"2.3, a

2
"0.7, a

3
"1.5, a

4
"0.4. (b) <

Mi
"1

(i"1,2, 4), a
1
"b

1
"0, a

i
"b

i
"1 (i"2,2, 4). Other

parameter values are as in Fig. 3(a). In (b), X
1

does not
oscillate because it is actually uncoupled from the rest of the
network since a

1
and b

1
are both nil. However, the remaining

variables remain coupled through regulatory interactions.
The backward regulations exerted by X

2
on X

4
and by

X
4

on X
2
, and the forward regulation exerted by X

2
on

X
3

indeed operate and allow oscillations in X
2
, X

3
and X

4
.
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X
4
, X

1
successively occur. Such alternating oscil-

lations coexist, for some values of b/a, with
simple sequential oscillations of the type shown
in Fig. 3. For N"8 and b'a, oscillations can
be grouped into two sets of variables, with suc-
cessive peaks in X

1
"X

5
, X

2
"X

6
,2, X

4
"X

8
.

Again, these oscillations can sometimes coexist
with the simple alternating oscillations of the
type shown in Fig. 3; only the latter type of
oscillations are found when a'b. These results
extend to larger, odd or even values of N.

4. Holding a Domino and Arresting the Clock

The question arises as to whether the clock
can readily be stopped by preventing one of the



FIG. 8. Action of an inhibitor in the network of coupled
phosphorylation}dephosphorylation cycles shown in Fig. 1.
Here I is a kinase inhibitor that reduces the maximum rate
of conversion of Y

1
into X

1
.

FIG. 9. (a) Immediate arrest of the oscillations when the
inhibitor I in the system shown in Fig. 8 reduces the max-
imum rate <

M1
by a factor of 2 in t"20 ("rst arrow); the

oscillations resume as soon as the inhibition is lifted and
<
M1

recovers its initial value in t"70 (second arrow).
(b) Similar e!ects can be observed when the maximum rate
<
M1

is increased by a factor of 2 ("rst arrow) and later
brought back to its initial value (second arrow), as a result of
the addition and subsequent removal of some kinase ac-
tivator. Parameter values are as in Fig. 3(a).
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domino-like transitions in the network of phos-
phorylation}dephosphorylation cycles. To assess
this possibility, we consider the presence of an
inhibitor which reduces by 50% the maximum
rate <

M1
of conversion of Y

1
into X

1
(Fig. 8) and

thereby holds the system to the left of the thre-
shold characterizing the transition of Y

1
into

X
1

(Fig. 2). The result of such an inhibition is the
immediate arrest of the oscillations and the con-
comitant evolution toward a steady state charac-
terized by low values of X

1
and X

2
, a high value

of X
4

and an intermediate value of X
3

[Fig. 9(a),
left arrow]. As soon as the inhibitor is removed
and parameter <

M1
recovers its initial value, the

oscillations resume [Fig. 9(a), right arrow]. The
same e!ects can also be obtained if, instead of
dividing by a factor of 2 the value of <

M1
, the

value of <@
M1

is multiplied by the same factor.
Because sustained oscillations occur in a do-

main bounded by two critical values of the ratio
<
M1

/<@
M1

, the arrest of the clock can also be
achieved by increasing rather than decreasing
parameter <

M1
. Then, as shown in Fig. 9(b) (left

arrow), oscillations immediately stop and the sys-
tem evolves toward a steady state characterized
by high values of X

1
and X

2
, a low value of

X
4

and an intermediate value of X
3
. The oscilla-
tions resume as soon as the parameter recovers
its initial value [Fig. 9(b), right arrow]. Here
again similar e!ects are obtained if the increase in
<
M1

is replaced by a decrease in <@
M1

.
To better understand the way the clock is stop-

ped by an instantaneous change in one of the
control parameters, it is useful to consider the
dynamics in the phase space resulting, for
example, from a two-fold decrease in parameter
<
M1

. Shown in Fig. 10 are the trajectories (dashed
lines) resulting from such a change, for various
initial conditions corresponding to "ve di!erent
points on the limit cycle (open circles marked
1}5). The change considered in Fig. 9(a) (left
arrow) corresponds to the case where the reduc-
tion in <

M1
occurs in point 1. In all cases the



FIG. 10. Suppression of sustained oscillations in the phase
plane. Starting from "ve points (denoted 1}5) of the limit
cycle shown as a projection in the (X

1
, X

2
) plane, the net-

work of phosphorylation}dephosphorylation cycles repre-
sented in Fig. 8 evolves right away toward the steady state
(black dot) when the maximum rate <

M1
is reduced by

a factor of 2. The trajectory starting from point 1 corres-
ponds to the arrest of the oscillations shown in Fig. 9(a).
When the initial value of<

M1
is restored, the system immedi-

ately returns (solid arrowed line) to the limit cycle.
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system responds to the decrease in <
M1

by evolv-
ing immediately toward the steady state (black
dot). When the parameter recovers its initial
value, the system directly resumes its periodic
motion along the limit cycle (arrowed solid line
starting from the steady state). Similar results are
obtained when increasing <@

M1
, and more gener-

ally, when controlling any of the other steps of
the network.

Figures 9 and 10 demonstrate that the limit-
cycle behavior can readily be brought to a stop
when the system is prevented from passing
through one of the thresholds associated with
each of the phosphorylation}dephosphorylation
cycles of the network. Thus, holding any of the
dominoes brings the system to a halt; in dynam-
ical terms, this corresponds to the evolution from
the limit cycle to the stable steady state that is
reached for the new value of parameter <

M1
.

Preventing the progression through the success-
ive transitions in the network therefore amounts
to holding the dominoes in place and to arresting
the clock by putting a spoke in the limit-cycle
wheel. The temporary arrest of oscillations lasts
as long as the inhibitor is present, and limit-cycle
behavior resumes as soon as the inhibitor is re-
moved. The arrest of the clock occurs because the
sequence of domino-like transitions itself consti-
tutes the clock.

5. Dynamics of the Network with only Backward
or Forward Coupling

The network studied so far contains two types
of regulatory coupling (see Fig. 1): each species
X

i
(a) activates the next step in the network by

enhancing the rate of conversion of Y
i`1

into
X

i`1
(forward coupling) and (b) controls a pre-

vious step by enhancing the conversion of
X

i~2
into Y

i~2
(backward coupling). The ques-

tion arises as to what is the dynamic behavior of
a network model in which only the forward or the
backward type of coupling is present. These two
situations can readily be implemented by setting
equal to zero the parameters b

i
or a

i
(i"

1,2,N), respectively.
Model networks containing four phosphoryla-

tion}dephosphorylation cycles and subjected
only to forward or backward coupling are repre-
sented in the left and right panels of Fig. 11. The
dynamics of the two types of network di!ers
markedly. In the case of only forward coupling,
oscillations are never obtained; instead, the sys-
tem displays the property of bistability (Fig. 12,
left column). In the symmetrical case where all
cycles possess the same parameter values, a range
of r"<

M
/<@

M
exists in which two stable steady

states, separated by an unstable steady state, co-
exist. Then, depending on the initial conditions,
the network evolves toward a state in which all
X

i
(i"1,2, 4) are either high [Fig. 12(b)] or low

[Fig. 12(c)]. The X
i
vs. r curve possesses a charac-

teristic S-shape [Fig. 12(a)] which is associated
with hysteresis as parameter r is varied back and
forth over the bistability range.

The situation in the presence of only backward
coupling is di!erent and depends on the number
of cycles in the network. When the network con-
sists of four phosphorylation}dephosphorylation
cycles, multistability is observed but in a di!erent
way than in Fig. 12(a)}(c): the bifurcation dia-
gram showing the steady-state value of X

i
as



FIG. 11. Scheme of a network containing four phosphorylation}dephosphorylation cycles in the presence of only forward
or backward coupling.
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a function of r"<
M
/<@

M
is of the pitchfork type

[Fig. 12(d)]. Here, four di!erent steady-state situ-
ations are possible, because of the actual uncoup-
ling of the subsets containing, respectively, the
(X

1
, Y

1
), (X

3
, Y

3
) and the (X

2
, Y

2
), (X

4
, Y

4
) cycles

which are linked two by two through regulatory
interactions. Thus, the system evolves to a steady
state in which X

1
, X

2
are high and X

3
, X

4
are

low [Fig. 12(e)], to another steady state in which
X

1
, X

4
are high and X

2
, X

3
are low [Fig. 12(f )],

or to steady states corresponding to the reverse
con"gurations (not shown).

In the presence of only backward coupling,
another type of behavior can, however, be ob-
served when the network contains an odd number
of cycles. The situation of a "ve-cycle network
controlled by only backward regulations is repre-
sented in Fig. 13. In such a system, sustained
oscillations occur in an appropriate range of para-
meter values (Fig. 14) and the behavior is analog-
ous to that seen in the system containing both
backward and forward coupling [see Fig. 3(a)].

The results on the e!ect of negative, backward
and/or positive, forward coupling have been gen-
eralized to networks containing more than
5 cycles of phosphorylation}dephosphorylation.
The results are summarized in Table 1 in section 7
below. When both forward and backward
coupling are present, sustained oscillations can
occur regardless of the value of the number of
cycles N, for N'3. In the presence of only posit-
ive, forward coupling, bistability with hysteresis
can occur regardless of the value of N, with all
variables having relatively high or low values
[see Fig. 12(a)} (c)].

When only negative, backward coupling is
considered, sustained oscillations can occur when
N or N/2 are odd numbers (this stems from the
assumption that backward coupling is exerted by
variable X

i
on step (i!2) in the network). If N/2

is an even number, bistability of the pitchfork
type [with half of the variables at a high value
and the remaining half at a relatively low value;
see Fig. 12(d)} (f)] can be observed. Because of
the existence of two independent subsets contain-
ing N/2 coupled cycles, four di!erent stable
steady states can be obtained in these conditions,
when taking into account the di!erent possible
combinations [see Fig. 12(e) and (f ) for the
case N"4]. When N is even and N/2 is odd,
oscillations occur in two uncoupled subsets of
N/2 di!erent X species. Thus, for N"10,
oscillations occur in (X

1
, X

3
, X

5
, X

7
, X

9
) and,

independently, in (X
2
, X

4
, X

6
, X

8
, X

10
) with a

phase relationship that is only dictated by initial
conditions.



FIG. 12. Bistability in the presence of only forward (left column) or backward (right column) coupling. The curves are
obtained in the symmetrical case for the models schematized in Fig. 11. In the presence of only forward coupling, the
coexistence of two stable steady states, in which all X

i
are equal and either high (b) or low (c), corresponds to an S-shaped

curve (a) as a function of r"<
M
/<@

M
; the two stable states are separated by an unstable steady state (} } }). In the presence of

only backward coupling, bistability is of the pitchfork type (d) as the coexisting stable steady states, again separated by an
unstable steady state (} } }), correspond to large values of some intermediates X

i
, and low values of the others. In the

symmetrical case considered the system shown in the right panel of Fig. 11 consists of two independent parts containing the
(X

1
, Y

1
), (X

3
, Y

3
) and (X

2
, Y

2
), (X

4
, Y

4
) cycles, respectively. Four possible steady-state situations can be encountered, in which

X
1
, X

2
are high and X

3
, X

4
are low (e), or X

1
, X

4
are high and X

2
, X

3
are low (f ); the additional two cases correspond to the

reverse situations (not shown). The values of a and b are indicated at the top of "gure; <
M
"1; <@

M
"1.5 in (b) and (c) and

<@
M
"0.7 in (e) and (f ). Other parameter values are as in Fig. 3(a). Initial conditions are X

3
"X

4
"0.5 with (b) X

1
"0.51,

X
2
"0.5, (c) X

1
"0.49, X

2
"0.5, (e) X

1
"X

2
"0.49, (f ) X

1
"X

2
"0.51.
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6. Dominoes Linked to an Independent Clock

So far we focused on a model that displays the
dynamics of dominoes and clocks. To understand
in further detail the link between the two types of
behavior, it is useful to consider a model where
a sequence of domino-like transitions is capable
of oscillating only when coupled to an indepen-
dent clock. The comparison between the two
models will help to contrast the two situations
FIG. 14. Sustained oscillations in the presence of only back
evolution, and (b) limit-cycle projection in the (X

1
, X

2
) plane.

with N"5 and a
i
"0, b

i
"1, <

Mi
"1.5; <@

Mi
"1 (i"1,2, 5).

X
1
"0.51, X

2
"2"X

5
"0.5.

FIG. 13. Scheme of a network of "ve phosphorylation}de-
phosphorylation cycles coupled only through backward
regulatory interactions.
and to pinpoint ways to distinguish between
them.

For de"niteness we consider a model, sche-
matized in Fig. 15, in which a linear sequence of
three coupled phosphorylation}dephosphoryla-
tion cycles is linked to an independent biochemi-
cal oscillator producing repetitive pulses of cyclic
AMP (cAMP). Each pulse of cAMP triggers the
activation of the kinase acting in the "rst cycle of
the cascade, in which a protein Y

1
is phos-

phorylated into the form X
1

by a kinase E
1

of
maximum rate <

M1
and Michaelis constant K

1
.

We assume that X
1

is an enzyme that catalyses
the synthesis of an intermediate Z

1
which itself

activates a kinase acting in the transformation of
Y

2
into X

2
in the second cycle of the network.

A similar link with a third phosphorylation}de-
phosphorylation cycle is considered through an
intermediate Z

2
. Similar results would be ob-

tained if the kinases acting in the second and
third cycles were directly activated by X

1
and X

2
,

respectively, as in the model of Fig. 1. However,
the transient changes in X

1
, X

2
, and X

3
triggered

by cAMP oscillations are better separated when
the activation of the kinases occurs via the inter-
mediates Z

1
and Z

2
.

The linear sequence of phosphorylation}de-
phosphorylation cycles considered in this model
cannot by itself generate oscillations. It can,
however, display oscillations when it becomes
coupled to the cAMP oscillator which behaves as
an independent clock. For illustrative purposes,
we will use for the cAMP oscillator a theoretical
ward coupling in the model schematized in Fig. 1. (a) Time
The curves are obtained by numerical integration of eqns (1),
Other parameter values are as in Fig. 3(a). Initial conditions:



FIG. 15. Model of a linear sequence of phosphorylation}
dephosphorylation cycles, passively coupled to an indepen-
dent oscillator generating repetitive pulses of cyclic AMP.
We assume that the oscillator drives phosphorylation of
Y

1
into X

1
in the "rst cycle through activation of a cAMP-

dependent protein kinase (see text for details).
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model previously proposed for pulsatile cAMP
signaling in Dictyostelium discoideum amoebae
(Goldbeter & Segel, 1977; Goldbeter, 1996).
Other models for cAMP oscillations could be
used (e.g. the one proposed by Martiel &
Goldbeter, 1987) without changing the nature of
the results; the present analysis, indeed, remains
largely independent of details of the oscillator
kinetics. The cAMP oscillator could likewise be
replaced by a calcium oscillator which could also
control a phosphorylation}dephosphorylation
cascade through modulation of a Ca2`-activated
kinase (Goldbeter et al., 1990).
The model for cAMP oscillations in
D. discoideum is governed by the three kinetic
equations (3) which describe the time evolution of
the concentrations of intracellular ATP, intracel-
lular cAMP, and extracellular cAMP; these three
variables are denoted by a, b and c, respectively
[see Goldbeter & Segel (1977), and Goldbeter
(1996), for further details on these equations and
on the signi"cance of the parameters]:

da
dt

"v!p/,

db
dt

"qp/!k
t
b,

dc
dt

"

k
t
b

h
!kc (3)

with

/"

a(1#a)(1#c)2
¸#(1#a)2(1#c)2

.

Coupling the linear chain of phosphoryla-
tion}dephosphorylation cycles with the indepen-
dently running cAMP oscillator is achieved by
assuming that the "rst kinase, of rate <

1
, is ac-

tivated by cAMP. The time evolution of variables
X

i
(i"1,2, 3) and Z

i
(i"1, 2), which denote the

concentrations of the corresponding species in
the model of Fig. 15, are given by

dX
i

dt
"<

i

(1!X
i
)

K
i
#(1!X

i
)
!<@

i

X
i

K@
i
#X

i

(i"1,2, 3),

dZ
i

dt
"k

z
X

i
!v

z

Z
i

K
z
#Z

i

(i"1, 2) (4)

with

<
1
"<

M1A
b

K
b
#bB,

<
i
"<

MiA
Z

i~1
K

ai
#Z

i~1
B (i"2, 3),

<@
i
"<@

Mi
(i"1,2, 3).



FIG. 16. Separating the dynamics of dominoes and clocks. In the model schematized in Fig. 15 and governed by eqns (3)
and (4), repetitive domino-like transitions can occur in a system which does not behave as a clock, as a result of cyclic AMP
oscillations (a) which run independently from the sequence of phosphorylation}dephosphorylation. The latter sequence is
driven by these oscillations through the activation of a cAMP-dependent protein kinase in the "rst cycle of the network. (b)
Oscillations of cAMP can elicit a repetitive sequence of domino-like transitions in all cycles of the network. Domino-like
transitions can be prevented in the third cycle (c) or second cycle of the sequence (d), without a!ecting the transition in the "rst
cycle. Data in panels (b}d) are obtained for the same oscillations of cAMP shown in (a). For the sake of clarity, the values of
X

2
and X

3
in (d) have been multiplied by 10 and 103, respectively. Parameter values for the cAMP oscillations generated by

eqns (3) are p"1.2, v"1.2, k"k
t
"0.4, ¸"106, q"100, h"10 (see Goldbeter & Segel, 1977; Goldbeter, 1996). Other

parameter values are: (b) <
M1

"0.5, <@
M1

"0.2, <
M2

"2, <@
M2

"0.2, <
M3

"3, <@
M3

"0.5, K
a1
"K

a2
"0.5, k

b
"100,

k
1
"k

2
"k

3
"0.01, k

z
"0.0015, v

z
"0.002, K

z
"0.4; (c) same as in (b) with <

M2
"3, k

z
"0.001, v

z
"0.0014; (d) same as in

(b) with <
M2

"0.5 (time is expressed in arbitrary units).
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The oscillations of intracellular cAMP (b) pro-
duced by this model are shown in Fig. 16(a). For
our purpose, to retain generality, time is ex-
pressed in arbitray units (for the case of Dictyos-
telium cells it is expressed in minutes so that the
period of cAMP oscillations is of the order of
10 min). How a sequence of domino-like
transitions in the model schematized in Fig. 15 is
passively coupled to independent cAMP oscilla-
tions is shown in Fig. 16(b). An increase in cAMP
triggers an increase in X

1
, which is followed,

successively, by an increase in X
2
and in X

3
. After

each cAMP pulse, all variables of the phos-
phorylation}dephosphorylation network se-
quentially undergo a sharp rise followed by an
abrupt fall. Here, however, in contrast to what is
observed for the model analysed in the preceding
sections, the chain of domino-like transitions can
be interrupted without stopping the clock which
continues to run independently. Two illustrations
of this uncoupling are given in panels (c) and (d)
of Fig. 16. Data in panels (b)} (d) were obtained in
the presence of the same oscillations of cAMP
[see panel (a)].

In Fig. 16(c), parameters are as in Fig. 16(b)
except that the formation of X

2
from Y

2
is slight-

ly favored. As a result, the plateau in X
2

lasts
longer; this leads to a prolonged synthesis of
e!ector Z

2
, so that the ratio of phosphorylation

vs. dephosphorylation rates in the third cycle of
the network always exceeds the threshold value.
As a consequence, X

3
always stays at a near-

maximum value. This variable still oscillates,
but only with a minute amplitude. If additional
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phosphorylation}dephosphorylation cycles were
coupled to the three cyles considered in Fig. 15,
much as X

3
they would not display any domino-

like transition.
Another way of uncoupling the clock from

domino-like transitions is to prevent the passage
through the phosphorylation}dephosphoryla-
tion threshold in one of the cycles of the network.
Thus, in Fig. 16(d), the maximum rate of the
kinase in the second cycle (<

M2
) is divided by 4 as

compared to the situation illustrated in panel (b).
As a consequence, X

2
cannot pass its activation

threshold and remains at a low value, while the
next variable in the network, X

3
, also fails to pass

its threshold and remains at an even lower value.
As indicated in Fig. 16(d), variables X

2
and

X
3

have lost the property of undergoing dom-
ino-like transitions, but the oscillations in vari-
able X

1
persist, being driven by the oscillations of

cAMP which continue regardless of whether any
passively coupled oscillations occur in the net-
work of phosphorylation}dephosphorylation
cycles.

A comparison of panels (b)}(d) in Fig. 16
shows that in the model of Fig. 15, depending on
whether the thresholds can be passed back and
forth, domino-like transitions in the network of
phosphorylation}dephosphorylation cycles may
or may not be driven by the periodic operation of
the cAMP oscillator which runs in full indepen-
dence from the network on which it exerts its
control. Moreover, part of the cycles of the net-
work may display repetitive domino-like
transitions while other cycles located further in
the network may lose them. In the models con-
sidered in earlier sections of this paper, holding
a domino in the network of coupled phos-
phorylation}dephosphorylation cycles necessar-
ily stopped the clock. Here, in contrast, holding
a domino in one of the cycles does not a!ect the
clock and does not prevent the occurrence
of repetitive transitions in other cycles of the
network located closer from the source of
oscillations.

7. Discussion

The dynamics of many cellular processes de-
pends on the operation of networks of phos-
phorylation}dephosphorylation cycles. A case in
point is provided by the sequential activation of
a variety of cyclin-dependent kinases which con-
trol the successive phases of the eukaryotic cell
cycle. A decade ago Murray & Kirschner (1989)
proposed to view the progression through the
successive biochemical steps of the cell cycle as
the falling of a row of dominoes, each step bring-
ing the activation of the next one in the pathway.
These authors pointed out that the stepwise
progression along the di!erent phases of the cell
cycle could also be viewed as being driven by
a continuous biochemical oscillator. Therefore,
they proposed to unify the two views of the cell
cycle as dominoes and clock. To clarify the link
between the two modes of dynamic behavior, we
have investigated a theoretical model displaying
the dynamics of dominoes and clocks. As in the
cell division cycle, the model is based on a net-
work of phosphorylation}dephosphorylation re-
actions, but it retains a general form not directly
related to the sequence of steps controlling the
cell cycle dynamics. Some insights provided by
the model may nevertheless bear on the dynamics
of the cell cycle, as discussed below for the arrest
of oscillations by protein kinase inhibitors.

We have investigated the di!erent modes of
dynamic behavior of an abstract, cyclically or-
ganized network of phosphorylation}dephos-
phorylation cycles (Fig. 1). In each covalent
modi"cation cycle i (i"1,2, N) of this circula-
tor model, a protein Y

i
is transformed (phos-

phorylated) into the form X
i
. We assumed that

owing to the phenomenon of zero-order ultrasen-
sitivity, each cycle is characterized by a sharp
threshold in the Y

i
to X

i
conversion as the ratio of

maximum phosphorylation vs. dephosphoryla-
tion rates is increased (see Fig. 2). Two types of
coupling between the di!erent phosphorylation}
dephosphorylation cycles were considered: a
forward activation by X

i~1
of the Y

i
to X

i
conver-

sion in the next cycle in the network, and a
backward activation by X

i`2
of the X

i
to Y

i
conversion. The former regulation ensures that
each cycle in the network is turned on by the
preceding cycle: the rise in X

i~1
will activate the

transition from Y
i

to X
i
, and the increase in

X
i
will bring about the rise in X

i`1
. To counter-

balance these positive interactions, and to allow
for the possibility of oscillations in the network,
the second type of regulation ensures that after
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a variable X
i
has risen, its level is brought down

after a lag by the rise in variable X
i`2

two cycles
further in the network. Thus, the rise in X

i
is

followed, successively, by the rise in X
i`1

and
X

i`2
, the latter causing the decrease in X

i
. We

have also considered the possibility that the in-
crease in X

i`1
brings down the level of X

i
, but

found that the delay is then too short to allow for
sustained oscillations. We veri"ed that qualitat-
ively similar results are obtained with longer
delays, when assuming, for example, that the rise
in X

i`3
or X

i`4
(for N'4) brings down the level

of X
i
.

We "rst dealt with the general case in which
the phosphorylation}dephosphorylation cycles
of the network are linked through both forward
and backward coupling (Fig. 1). In such a case,
sustained oscillations are observed in a para-
meter domain that corresponds to the region
around the threshold at which protein phos-
phorylation sharply increases in each cycle
(Fig. 4). Each cycle in the network is then turned
on sequentially in a series of domino-like
transitions [Fig. 3(a)]: the rise and decay in each
phosphorylated protein thus propagate along the
network. The system behaves as a limit-cycle
clock because this sequence of rise-and-fall
transitions possesses a repetitive nature. The
dominoes aspect of the oscillations is re#ected by
the nearly square appearance of the limit cycle
[Fig. 3(b)] which is due to the abrupt nature of
the on and o! switching of each phosphorylated
protein in the network.

Bifurcation diagrams (Figs 5 and 6) show that
sustained oscillations occur in precise conditions,
i.e. in a certain range of parameter values. Out-
side this range the network model evolves toward
a stable steady state. At the borders of the oscilla-
tory domain, because of the subcritical nature of
the Hopf bifurcations, a domain exists in which
a stable limit cycle coexists with a stable steady
state (Fig. 5). The bifurcation diagrams con"rm
the importance of thresholds for the occurrence
of sustained oscillations. Indeed, the latter only
occur when the phenomenon of zero-order ultra-
sensitivity produces su$ciently sharp transitions
in the steady-state levels of phosphorylated pro-
tein (Fig. 2). The degree of ultrasensitivity re-
quired to produce oscillations does not change
signi"cantly as the number of cycles in the
network N increases. Besides the zero-order ef-
fect, other sources of ultrasensitivity, such as en-
zyme cooperativity, could also favor oscillations.

To reduce the exploration of dynamic behavior
in parameter space we primarily focused on the
symmetrical case where all the cycles of the
network are characterized by identical kinetic
parameters. We veri"ed, however, that sustained
oscillations can also occur in asymmetrical con-
ditions (Fig. 7). In such conditions (see Section 3),
particularly for b'a, more complex patterns of
oscillations are possible, which sometimes coexist
with the simple sequential oscillations of the type
shown in Fig. 3.

New modes of dynamic behavior are observed
when the phosphorylation}dephosphorylation
cycles are coupled through only forward or back-
ward regulatory interactions (Fig. 11). In the for-
mer case, when each variable X

i
only promotes

the conversion of Y
i`1

into X
i`1

, bistability ac-
companied by hysteresis is observed over a range
bounded by two critical parameter values
[Fig. 12(a)]. Regardless of the number of cycles
N, either all X

i
are low while the forms Y

i
are

high, or the reverse situation obtains, depending
on the initial conditions [Fig. 12(b) and (c)].

When only backward coupling is considered,
i.e. when each variable X

i
solely promotes the

conversion of X
i~2

into Y
i~2

, the type of dy-
namic behavior depends on the number of cycles
(Table 1). Thus, when N or N/2 are odd (as in the
scheme of Fig. 13), sustained oscillations are ob-
served for appropriate parameter values. These
oscillations (Fig. 14) are similar to those obtained
in the general case (Fig. 3). When N/2 is even,
oscillations are replaced by multistability.
The latter behavior is of the pitchfork type
[Fig. 12(d)], with variables divided in two groups
reaching either a high or a low value. Four di!er-
ent stable steady states can be reached in such
conditions, as shown in Fig. 12(e) and (f ) for the
case N"4. This is due to the existence of two
independent subgroups containing, respectively,
the coupled variables (X

1
, X

3
) and (X

2
, X

4
). In-

creasing N when N/2 is even does not increase
the number of possible steady states. Thus, for
N"8, the network actually consists of two inde-
pendent subgroups containing, respectively, the
variables (X

1
, X

3
, X

5
, X

7
) and (X

2
, X

4
, X

6
, X

8
).

Within each group, the four variables are coupled



TABLE 1
Modes of dynamic behavior of the network model as a function of the number of phosphorylation}
dephosphorylation cycles N and of parameters a and b measuring, respectively, the strength of forward and
backward coupling. ¹he results are summarized for the fully symmetrical case in which all kinetic
parameters are identical for each phosphorylation}dephosphorylation cycle. More complex situations can

arise when N'6 and aOb, with a, bO0 (see text)

N"3 N"4 N"5 N'5

a"1 Steady state Oscillations Oscillations Oscillations ∀N
b"1 (Hopf ) (Hopf )

a"1 Steady state Bistability Bistability Bistability ∀N
b"0 (Hysteresis) (Hysteresis)

a"0 Oscillations* Four stable steady Oscillations Four stable steady states if:
b"1 (Hopf ) states (Hopf ) N/2"even number

(Pitchfork) Oscillations if:
N or N/2"odd number

*For oscillations to occur for N"3 in the case a"0, b"1, a certain degree of asymmetry is needed. Oscillations occur, for
example, for <

Mi
"1 and <@

Mi
"0.7 (i"1,2, 3).
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in such a way that only two steady-state situ-
ations may be encountered within each group
(e.g. X

1
high, X

3
low, X

5
high and X

7
low, or the

reverse situation). All in all, four distinct stable
steady states are possible. The evolution toward
either one of these states depends on initial
conditions.

Oscillations resulting from cyclically organized
negative feedback interactions have been de-
scribed in a number of other biological contexts.
Thus, in neurobiology, regulatory interactions
known as cyclic inhibition can readily produce
oscillatory activity in neural networks (Kling &
Szekely, 1968). More closely related to the mech-
anism considered here are the theoretical
(Thomas et al., 1976; Thomas & d'Ari, 1990) and
recent experimental studies (Elowitz & Leibler,
2000) showing the occurrence of oscillations due
to cyclically organized negative feedback loops in
genetic control systems. A "nal illustration is
provided by the case of the stability of idiotypic
networks in immunology, where forward as well
as backward regulatory interactions were con-
sidered in a theoretical study (Hiernaux, 1977)
which showed the possibility of sustained oscilla-
tions in antibody production when the cyclically
organized idiotypic network contains an odd
number of elements. That study, as well as those
of genetic control circuits (Thomas et al., 1976;
Thomas & d'Ari, 1990), also showed the possib-
ility of multistability when the number of ele-
ments in the network is even. A similar
conclusion was reached in the present model for
even values of N/2 (see Table 1).

A further similarity between the circulator
model of coupled phosphorylation}dephos-
phorylation cycles and the idiotypic and genetic
control networks is that in all cases the coupling
occurs via regulatory interactions rather than
direct chemical transformation of one element of
the network into the next element, as occurs, for
example, in metabolic cycles. The possibility of
oscillations in cyclical chains of chemical reac-
tions was investigated by Hearon (1953) who
showed the absence of sustained oscillations in
such systems in the case of linear kinetics. The
cyclical nature of some biochemical pathways
does not ensure per se the occurrence of meta-
bolic oscillations. Such oscillations occur only
under precise conditions, in the presence of ap-
propriate regulation of some of the enzymatic
steps in the pathway. Thus, oscillations in the
glycolytic pathway occur owing to the activation
of the allosteric enzyme phosphofructokinase by
a reaction product (Goldbeter, 1996). Oscilla-
tions can also occur in linear sequences of bio-
chemical reactions in the presence of end-product
inhibition (Tyson & Othmer, 1978).
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The present study relates to theoretical studies
devoted to the dynamic behavior of networks of
protein modules endowed with threshold-like
properties originating from zero-order ultrasensi-
tivity in covalent modi"cation. Previous studies
stressed the possibility of performing logical op-
erations by means of such biochemical systems
(Arkin & Ross, 1994; Bray, 1995). A recent study
of a large-scale model of a network of randomly
connected, highly idealized kinase and phos-
phatase components also showed the occurrence
of multiple attractors and oscillations due to
negative or positive regulatory interactions
(James et al., 1999).

The circulator model could be extended to the
case of a cascade where X

i
is itself (rather than an

activator of ) the kinase that catalyzes the conver-
sion of Y

i`1
into X

i`1
. The latter situation was

considered in a simple cascade model for the
mitotic oscillator in embryonic cells (Goldbeter,
1991, 1996). In that three-variable model, thre-
sholds due to zero-order ultrasensitivity (Fig. 2)
are also required for sustained oscillations (Gold-
beter & Guilmot, 1996) which originate from
a negative feedback loop. There, indeed, activa-
tion of the cdc2 protein kinase (now known as
cdk1) through dephosphorylation is brought
about by the accumulation of cyclin B, and cdc2
kinase activates through phosphorylation an en-
zyme involved in cyclin proteolysis; the repetitive
activation of cdc2 kinase is driven by cyclin syn-
thesis. Here, because of the cyclical organization
of the positive and/or negative feedback interac-
tions, sustained oscillations do not rely on pro-
tein synthesis but are driven by ATP hydrolysis
in each phosphorylation}dephosphorylation
cycle of the network (see right panel in Fig. 1).

A key aspect of the analogy of dominoes and
clocks investigated in the circulator model per-
tains to the e!ect of an inhibitor that would block
the system in a given point by preventing the
progression to the next step in the network. Thus,
when assuming that an inhibitor I reduces the rate
of conversion of Y

1
into X

1
(Fig. 8)*precisely

as protein inhibitors reduce the activity of cyclin-
dependent kinases in the cell cycle (Morgan,
1995; Sekiguchi & Hunter, 1998)*oscillations
stop immediately as the system reaches a steady
state; periodic behavior resumes as soon
as the inhibitor is removed (Fig. 9). From a
dynamical point of view, impeding the fall of the
dominoes by holding one of them thus corre-
sponds to arresting the clock by means of an
inhibitor that brings the system into a stable
steady state, regardless of the phase of the oscilla-
tions at which the inhibition occurs (Fig. 10).
While the e!ect of an inhibitor generally lasts
only the time during which it is present, in the
case of hard excitation where a stable steady state
coexists with a stable limit cycle (see Figs 4}6)
the transient action of an inhibitor may suppress
the oscillations in a prolonged manner. Indeed, in
such conditions, when the inhibitor is removed,
instead or returning to the limit cycle the system
may evolve toward the stable steady state that
coexists with the stable limit cycle in the domain
of hard excitation [see Fig. 5(b)].

The immediate arrest of oscillations by kinase
inhibitors (Fig. 9) is reminiscent of the way inhibi-
tors of cyclin-dependent kinases block the cell in
a given phase of the cell cycle. Such pause-induc-
ing mechanisms, known as checkpoints (Hartwell
& Weinert, 1989), have been included in more
detailed models of the eukaryotic cell cycle
(Novak et al., 1998; Chen et al., 2000). Even
though the present model does not apply directly
to the cell cycle, it suggests that the stepwise
progression along the di!erent phases of the
cycle, temporarily halted by the transient action
of inhibitors, corresponds to the dynamics of an
impeded limit-cycle oscillator which is transiently
moved into a stable steady state in the presence of
such inhibitors and resumes its periodic opera-
tion as soon as they are removed. This view can
be related to conclusions drawn by Aguda
(1999a, b) from theoretical studies on the nature
of checkpoints in the cell cycle. By analysing
models involving phosphorylation}dephospho-
rylation cycles centered around the kinase cdc2,
the phosphatase cdc25 and the kinase wee1, this
author showed that the G2-M checkpoint may be
associated with control of the passage through
a critical parameter value corresponding to
a transcritical bifurcation point beyond which
a new steady state is established. One of the
network models analysed here, namely the net-
work with only forward activation (Fig. 11,
left panel) resembles an abstract extension of
simpler models to a ring of phosphorylation}
dephosphorylation cycles, suggested by Aguda
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(see Fig. 6 in Aguda, 1999a). The present analysis
focused explicitly on the oscillatory dynamics
and the multistability properties of such net-
works subjected to a variety of forward or/and
backward regulatory interactions.

In the circulator model, the network of coupled
phosphorylation}dephosphorylation cycles dis-
plays the dynamics of both dominoes and clocks.
The sequence of all-or-none transitions consti-
tutes the clock mechanism itself. Preventing any
one transition from one step to the next in the
sequence immediately stops the oscillations in the
whole network (see Figs 9 and 10). No oscilla-
tions is lost, however, when a particular step
happens to become independent of the other
steps, without breaking the coupling between
preceding and following steps in the sequence, as
in the case illustrated in Fig. 7(b). By analysing
a model based on a linear sequence of phos-
phorylation}dephosphorylation cycles, not able
to generate oscillations by itself, we showed that
oscillations can occur in such a network when it
is passively coupled to an independent clock.
Preventing a particular transition in the sequence
can then suppress the propagation of large-
amplitude oscillations through and beyond this
step without a!ecting repetitive domino-like
transitions in the preceding steps (Fig. 16). This
key di!erence in dynamic behavior, due to the
independence of the clock from the operation of
the network of phosphorylation}dephosphoryla-
tion cycles, provides a diagnostic tool for distin-
guishing between the two situations.

Does any oscillatory system necessarily display
the dynamics of dominoes? An oscillation always
re#ects the (generally) periodic recurrence of a se-
quence of steps: each element in the pathway
reaches a maximum at a particular phase and
brings about the transition to the next step of the
oscillatory mechanism until the "nal step returns
the system to its initial state and the cycle
resumes. Not all oscillations, however, are char-
acterized by the succession of well separated,
successive steps as in the present model; such
a separation is due to the existence of very sharp
thresholds. In other cases [see, for example,
Fig. 3(c)], periodic variations are much less
abrupt as successive steps blend into each other
in the course of time in a much smoother manner.
The model analysed here shows that oscillatory
processes in biochemistry can sometimes be
viewed both as dominoes and clocks, and that
a continuum of clock waveforms exists of which
the fall of dominoes represents a limit.
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