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INTRODUCTION

The cell division cycle is certainly one of the most important cellular processes
in which nonlinear dynamics plays a major role. During the last decade, experimen-
tal evidence has accumulated to show that the onset of the M (mitosis) and S (DNA
replication) phases of the embryonic and somatic cell cycles are controlled by the
periodic activation of cyclin-dependent kinases (cdks) known as cdkl and cdk2, re-
spectively.lf9 Various theoretical models have been proposed to account for the gen-
eration of sustained oscillations in the activity of these kinases, particularly the
kinase cdc2 (cdk1) which controls the G2/M transition. The early theoretical models
were either based on the positive feedback exerted by cdc2 on its own activation!0-12
(such positive feedback is now known to operate via cdc2 dephosphorylation by the
cdc25 phosphatase which itself is activated by cdc2) or on the negative feedback in-
volving the cdc2-induced degradation of cyclin which leads to cdc2 inactiva-
tion.!3-16. More detailed models have since been proposed for both the fission
yeast!720 and embryonic cell cycles.1923 The latter models take into account the
various checkpoints that ensure the orderly progression through the successive phas-
es of the cell cycle.

If the M and S phases are to follow each other during the cycle, rather than oc-
curring concomitantly, and if each of the two phases is controlled by a biochemical
oscillator involving, respectively, cdkl and cdk2 with their associated cyclins, then
it is necessary that the two oscillators be coupled through mutual control. Such con-
trol processes are part of the checkpoints mentioned above. There is evidence that
this mutual control is of a negative nature. DNA replication is known to inhibit the
triggering of mitosis until replication is completed.3>~>>*25 Moreover, the kinase
cdkl that controls the initiation of mitosis inhibits the transition of the cell to a G1
replication-competent stage as long as the cell is in the S, G2, or M phases.3-2
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Coupling two oscillators may profoundly affect their dynamic behavior. We wish
to explore here the consequences of a coupling through mutual inhibition of the bio-
chemical oscillators controlling the onset of the M and S phases of the cell cycle. To
keep the theoretical study relatively simple, we use for each of the two oscillators
the model based on negative feedback previously proposed for sustained oscillations
in cdk activity driven by cyclin synthesis and degradation.!3-15 In the present model
each of the two oscillators contains three variables, that is, cdk1 or cdk2 with their
associated cyclin and enzyme governing cyclin degradation. The coupling is as-
sumed to follow from the direct inhibition of the synthesis of the cyclin of one oscil-
lator by the cdk of the other oscillator. Similar results are obtained when assuming
that inhibition occurs through mutual activation of cyclin degradation.

The present work does not aim at proposing a detailed model for the somatic cell
cycle. Rather, we wish to investigate in a skeleton model how the mutual inhibition
of two biochemical oscillators controlling different phases of the cell cycle may in-
fluence the oscillatory dynamics of such a coupled system. When studying the dy-
namic behavior of the coupled oscillators as a function of the strength of mutual
inhibition, we recover, as most common behavior, alternating oscillations that likely
correspond to the sequential activation of cdkl and cdk2 and thus to the observed
alternation between mitosis and the S phase. Such periodic alternation between the
two kinases is, however, not the only mode of dynamic behavior predicted by the
model. Thus, we also uncover the possibility, in slightly different conditions, of au-
tonomous chaotic behavior.

In the next section we present the skeleton model of the double cdk1-cdk?2 oscil-
lator, as well as the kinetic equations that describe its time evolution. In the section
ALTERNATING AND CHAOTIC OSCILLATIONS, we determine the various modes of pe-
riodic or chaotic oscillatory behavior as a function of the strength of the inhibitory
coupling. The results are discussed in the DISCUSSION in regard to their physiological
significance and to other examples of biological oscillators coupled through mutual
inhibition.

SKELETON MODEL OF A DOUBLE OSCILLATOR CONTROLLING
SUCCESSIVE PHASES OF THE CELL CYCLE

The model considered is schematized in FIGURE 1. It consists of two coupled min-
imal cascade models generating oscillations on the basis of cdk-induced cyclin deg-
radation. The first oscillator, controlling the initiation of mitosis at the G2/M
transition, involves the activation of cdkl (M) by cyclin B (Cy), and the cdk1-in-
duced degradation of cyclin B by an ubiquitin ligase (X;) which is part of the ubig-
uitin-mediated proteolysis system. The second oscillator, controlling the initiation of
DNA replication at the G1/S transition, is based on the activation of cdk2 (M,) by
cyclin E (C5,), and on the cdk2-induced degradation of cyclin E by another ubiquitin
ligase (X;). Note that, for simplicity, we do not consider the formation of a cy-
clin-cdk complex, but rather an activation of cdk by cyclin. Because the precise na-
ture of the coupling is not yet fully characterized, we assume that the mutual
inhibition of the two oscillators occurs as follows (see F1G. 1): cdk1 (M) inhibits the
synthesis of cyclin E (C,), while cdk2 (M,) inhibits the synthesis of cyclin B (C)).
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FIGURE 1. Skeleton model of two coupled biochemical oscillators controlling the M
and S phases of the cell cycle. Each oscillator consists of a three-variable cascade involving
a cyclin (Cy or Cy), a cyclin-dependent kinase (cdk) (M, or M;), and a cdk-activated ubig-
uitin ligase (X; or X,) that controls cyclin degradation. The + sign indicates the inactive form
of the enzymes. The dashed lines ending with a horizontal bar represent the inhibition ex-
erted by M, and M, on the synthesis of C; and C,, respectively.
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The inhibitory action of cdk1 and cdk?2 is described phenomenologically by treating
the two kinases as inhibitors that directly modulate the rate of cyclin synthesis. Sim-
ilar results are obtained if we assume that the coupling occurs through activation by
M, (M) of cyclin C, (Cy) degradation (see below).

The time evolution of the system of two coupled biochemical oscillators is gov-
erned by the following system of kinetic equations!3-13:

dc,
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In the above equations, C; and C, denote the concentrations of cyclins B and E,
while M;, M, and X, X, refer to the fractions of activated cdkl and cdk2 or of en-
zymes X and X,. Moreover, v; and vg; (j = 1, 2) denote the constant rate of cyclin
synthesis and the maximum rate of cyclin degradation by enzyme X; reached for X;
=1 for the first (j = 1) and second (j = 2) oscillator, respectively; K;; and K1 (K,
and K ,) denote the Michaelis constants for cyclin degradation and for cyclin acti-
vation of the phosphatase acting on the phosphorylated (inactive) form of the kinase
cdkl (cdk2); k4 (kgp) represents an apparent first-order rate constant related to non-
specific degradation of cyclin. Moreover, V; (U;) and K; (H;) (i=1, ...., 4) denote the
effective maximum rate and the Michaelis constant for each of the four enzymes in-
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volved in the two cycles of the cascade for each oscillator, namely, on one hand, the
phosphatase and the kinase acting on cdk1 (cdk2), and on the other hand, the kinase
cdkl (cdk2) and phosphatase acting on the enzyme governing cyclin B (cyclin E)
proteolysis (see FIG. 1). For each converter enzyme, the two parameters V; (U;) and
K; (H;) are divided by the total amount of relevant target protein, that is, the total
amount M (M,7) of cdkl (cdk2) or the total amount X7 (X,7) of ubiquitin-conju-
gating enzyme acting on cyclin B (cyclin E); M1, M1, X1, and X, are considered
as constant throughout the cell cycle.

For each oscillator the coupling between the two cycles of the cascade arises from
the expressions for the effective, maximum rates V; (U;) and V3 (U3) given by Equa-
tions (2a—d). Expression (2a) reflects the assumption that cyclin B activates in a
Michaelian manner the phosphatase that acts on cdkl; V,,; denotes the maximum
rate of that enzyme reached at saturating cyclin levels. On the other hand, Equation
(2b) expresses the proportionality of the effective maximum rate of cdk1 to the frac-
tion M of active enzyme; V3 denotes the maximum velocity of the kinase reached
for M| = 1. Whereas Equations (2a) and (2b) pertain to the cdkl oscillator control-
ling the G2/M transition, Equations (2¢) and (2d) yield the expressions for the max-
imum rates U; and Uj of the corresponding enzymes in the second oscillator, which
controls the G1/S transition through the periodic activation of cdk2.

The coupling between the two oscillators is introduced via the first term in the
kinetic equations for Cy and C,. This term reflects the Michaelian inhibition of C;
synthesis by M, and of C, synthesis by M;. Parameter K;,,,; (K,,») denotes the inhi-
bition constant divided by the total amount of cdk2 (cdkl). The smaller K;,,; and
Ko, the stronger the inhibition.

We shall restrict the present analysis to the symmetric case in which correspond-
ing parameter values are identical for each of the two oscillators. In particular, the
maximum rate of cyclin synthesis (v;; = v; = v;) and the inhibition constant (K;,,; =
K;.» = K;,,) have the same values for both oscillators. In the following we shall de-
termine the dynamic behavior of the system of Equations (1a—f) as a function of the
strength of the mutual inhibition measured by parameter K;,,. We shall briefly dis-
cuss at the end of this paper the effect of introducing asymmetries in parameter val-
ues between the two oscillators. Focusing on the symmetrical case provides a
convenient reference situation, since asymmetries in parameter values may be treat-
ed, in a second stage, as perturbations from such a reference state.

ALTERNATING AND CHAOTIC OSCILLATIONS

The most natural parameter for studying the effect of a coupling between the two
enzymatic cascades controlling the periodic activation of cdkl and cdk2 is K,
which measures the strength of mutual inhibition of the two oscillators. In FIGURE 2
we present a series of phase portraits obtained by projecting the trajectory of the full,
six-variable system, on the C;—C, plane, for decreasing values of the inhibition con-
stant K;,,,. The data show the existence of a rich spectrum of dynamic behavior. The
actual sequence of oscillatory behavioral modes depends on the value of parameter
v;. The influence of this and other parameters will be examined in a subsequent pub-
lication. Here, we select the value of v; so as to show the variety of oscillatory phe-
nomena that the coupling of the two oscillators may bring about.
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FIGURE 2. Dynamic behavior of the double cdk1-cdk2 oscillator model as a func-
tion of the inhibition constant K;,,,. Shown is the trajectory followed by the six-variable sys-
tem (la—1f) projected onto the C;—C, plane (concentrations C; and C, are both expressed in
uM). The sequence of diagrams is obtained at a constant value of the rate of cyclin synthesis
(v;=0.05 uM min~!). When K;,,= 0.7 a pair of nonsymmetric limit cycles arise. In the range
0.7 < K;,,, < 0.664 a period doubling cascade is observed. For K;,, = 0.66 a pair of nonsym-
metric chaotic attractors are found, and when K;,, reaches the value of 0.65 they merge into
a single antisymmetric, chaotic attractor. In the range 0.3 < K;,,, < 0.2 a coexistence between
an antisymmetric chaotic attractor and a pair of nonsymmetric limit cycles is observed. For
K;,, = 0.1 the two nonsymmetric limit cycles disappear and only the antisymmetric chaotic
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FIGURE 3. Alternating oscillations of cyclins C; and C, (left upper panel) and of ki-
nases M; and M, (left lower panel) in the double cdk1-cdk2 oscillator model. These oscil-
lations correspond to the antisymmetric limit cycle (right panel) obtained in FIGURE 2 for
K;,, = 0.03. The time evolution is obtained by numerical integration of Equations (1a)—(1f)
using a routine for solving stiff differential equations.

Starting with weak inhibition corresponding to a relatively large value of the in-
hibition constant (K;,, = 0.7), we observe the presence of two limit cycles that are
symmetric with respect to each other. In each cycle, however, the variations of C;
and C, are not symmetrical, so that the two coexisting trajectories can be described
as nonsymmetric limit cycles. Upon decreasing K, down to 0.67 and 0.664, we ob-
serve for each cycle a sequence of period doubling, which eventually leads to the co-
existence of two strange attractors (Kj,, = 0.66). Further decrease of Kj,, to 0.65
causes the fusion of the two chaotic attractors. The resulting, unique strange attractor
remains present at smaller values of K, (e.g., Kj,, = 0.3), and later is seen to coexist
with two nonsymmetric limit cycles (K;,,= 0.2). For K;,,, = 0.1, the trajectory is again
unique and takes the form of an antisymmetric chaotic attractor. Finally, for very low
values of the inhibition constant (K;,, = 0.03), that is, when the mutual inhibition is
strong, we observe an antisymmetric limit cycle.

In the present paper we wish to focus on two of the behaviors shown in the se-
quence of FIGURE 2 that appear to be of particular biological significance. The first
is the case of antisymmetric oscillations which correspond to the trajectory obtained
for K;,, = 0.03. This trajectory in the C{—C, plane is again shown in FIGURE 3, to-
gether with the corresponding oscillations in C;, C,, M, and M,. We see that in the
presence of strong mutual inhibition, the two oscillators operate out of phase, so that

attractor remains (see also FIG. 4). For very low values (K;,, = 0.03) of the inhibition con-
stant an antisymmetric limit cycle is obtained (see also FIG. 3). The other parameters for the
first and second oscillators are: H; (i =1, ..., 4)=K; (i=1, ...,4)=001; V,, = U, =
0.3 min™Y; V, = Uy =0.15 min™!; V3 = U,;3 = 0.1 min~!; V, = U, = 0.05 min™; Koy =Ko =
0.5 H.M, Va1l =V = 0.025 HM min~ 5 Kdl = KdZ =0.02 HM, kdl = kd2 =0.001 min~".
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FIGURE 4. Autonomous chaos in the double cdk1-cdk2 oscillator model. The aperi-
odic oscillations correspond to the strange attractor shown for K;,, = 0.1 in FIGURE 2. Panels
(A) and (C) show the aperiodic evolution of the cyclins C; and C, (in uM). Panels (B) and
(D) show the aperiodic evolution of the kinases M and M,. The curves are obtained as de-
scribed in FIGURE 3.

cdkl (M) reaches its maximum when cdk2 (M,) is close to its minimum, and vice
versa. This situation of alternating oscillations in cdk1 and cdk?2 likely corresponds
to the physiological case (see DiscussioN). Because this study is of a qualitative
rather than quantitative nature, the values of the parameters in FIGURE 3 have been
selected arbitrarily so as to yield a period of mitotic oscillations of the order of so-
matic cell cycle lengths.

A second case of particular interest is that in which aperiodic oscillations result
from the coupling between the cdk1 and cdk?2 oscillators. Shown in FIGURE 4 are the
chaotic oscillations corresponding to the strange attractor obtained in FIGURE 2 for
K;,, = 0.1. The variations in M and M, are again out of phase, but have lost their
periodic nature.

The question arises as to whether the results depend on the precise form of the
coupling through mutual inhibition. To address this point we have studied another
version of the model in which mutual inhibition is achieved through activation of C;
(C,) degradation by M, (M,). For simplicity, we treat this putative regulation as a
direct activation process. Then, Equations (1a) and (1d) for C;| and C, are replaced
by Equations (3a) and (3b):
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FIGURE 5. Alternating oscillations (A) and chaos (B) obtained in the model when
the mutual inhibition of the two oscillators occurs through the putative activation of cy-
clin degradation by the cyclin-dependent kinases. The evolution of the coupled oscillators
is then governed by egs. (1b), (1c), (le), (1f), (3a), and (3b). Shown are the projections of
the trajectories followed by the system onto the C|—C, plane; C; and C, are expressed in
UM. Parameter values are: H; (i=1, ...,4) =K; (i=1, ..4) =0.01; V,;; = U,,; = 0.3 min™!;
V,=U,=0.15min"!; V, 3= U,3= 0.1 min~!; V, = Uy = 0.05 min~"; K.; = K, = 0.5 uM;
Va1 = vgp = 0.025 UM min~!; Ky = Kp = 0.02 uM; kg = ko = 0.001 min~!; moreover, for
(A) Ky = Kpp = 0.1 UM, v;; = v = 0.005 uM min~!, and for (B) K, = K,p = 1.0 uM, v;; =
Vi =0.01 uM min~L,
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The time evolution of variables M|, X, M, and X, remains given by Equations
(1b), (1c), (1e), and (1f), respectively. The results presented in FIGURE 5 show that
alternating oscillations as well as chaos are recovered in that version of the model.

DISCUSSION

Nonlinear phenomena play a key role in the dynamics of the cell cycle. In animal
cells, there is evidence for autonomous oscillations in the activity of the
cyclin-dependent kinases cdkl and cdk2, the rise of which initiates mitosis (M
phase) and DNA replication (S phase), respectively. The avoidance of concomitancy,
that is, the ordering of these events is achieved through checkpoint mechanisms that
are partly based on the mutual inhibition of mitosis and DNA replication.3*5’8’24*26
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Here we have explored theoretically the effects of coupling through mutual inhi-
bition the two biochemical oscillators that control the M and S phases of the cell cy-
cle. To determine the effects of such a coupling, we resorted, for each of the two
oscillators, to a simple model of a phosphorylation—dephosphorylation enzymatic
cascade regulated by negative feedback. This model was previously shown to pro-
vide a simple mechanism for sustained oscillations in the activity of a cyclin-depen-
dent kinase. Moreover, it fits very simply with the fact that cyclin and the active form
of cdk, respectively, are slow and fast variables. We coupled the two oscillators by
considering that the synthesis of cyclin in each oscillator is inhibited by the cdk of
the other oscillator. The strength of this mutual inhibition is measured by the inhibi-
tion constant K;,,. This skeleton model of two coupled oscillators can be viewed as
a simple, cdkl-cdk2 double oscillator model for the cell cycle.!3-15 Obviously, it
would be desirable to consider a more realistic model, but the number of variables
and parameters would rapidly increase. Such a model could, for example, incorpo-
rate an inhibitor of both cdkl and cdk?2 that keeps them turned off in G1 phase; re-
lease from this inhibition would be connected with cell growth. It appears, indeed,
that mitosis is prevented as long as the cell has not reached a critical size.

Our analysis shows that the dynamic behavior of the double oscillator model
markedly depends on the strength of mutual inhibition. When this inhibition is
strong, antisymmetric (i.e., alternating) oscillations are observed, in which one cdk
reaches its maximum while the other is at a minimum. Such an alternation likely cor-
responds to the physiological situation as it would ensure the ordered progression of
the cell through the S and M phases. In FIGURE 3 which illustrates this situation, the
fractions of active cdk1 (M) and cdk2 (M) are seen to reach a plateau during their
active phase. This situation with rapid alternations of replication and mitosis without
intervening G1 and G2 gaps is most relevant to the embryonic cell cycle. For smaller
values of the rate of cyclin synthesis v;, however, M and M, do not reach a pro-
longed plateau during the active phase, and the latter occupies a shorter portion of
the period. The value of v; selected for FIGURES 2 and 3 was chosen so as to maxi-
mize the variety of dynamic phenomena that can be observed in the model.

When the inhibition is weaker, chaos is found over a relatively large range of pa-
rameter values (see FIGURE 2). The question remains as to whether this phenomenon
is of physiological significance. Previous theoretical studies have raised the possi-
bility that the variability of the cell cycle duration might be due to the chaotic nature
of its underlying dynamics.2’-39 In this context some theoretical models have been
proposed in which chaos originates from the periodic forcing of a model biochemi-
cal oscillator.3! Here, in contrast, chaos is autonomous as it occurs in the absence of
any periodic forcing. The study of the cdk1-cdk2 double oscillator model shows that
aperiodic oscillations can naturally arise from the coupling between the two cdk os-
cillators when the strength of mutual inhibition is in the appropriate range, that is,
neither too strong (in which case periodic, alternating oscillations would occur) nor
too weak (in which case two nonsymmetric limit cycles may coexist, as shown in
FIGURE 2 for K;,,, = 0.7). These results provide a first theoretical indication as to how
autonomous chaos may occur in the cell cycle dynamics.

The study of the double oscillator model also shows the possibility of a coexist-
ence between multiple periodic or chaotic attractors (see FIG. 2), as well as other types
of oscillations (symmetric or nonsymmetric) not shown there. The very rich reper-
toire of dynamic behavior will be studied in further detail in a subsequent publication
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where a bifurcation diagram in the v—K;,,, parameter plane will be presented. Such a
diagram shows that the sequence of temporal patterns in FIGURE 2 depends on the val-
ue of parameter v;. For the value of v; considered in this figure, the system evolves
toward a stable steady state in the absence of mutual inhibition, that is, at very large
K;,, values. Thus, in this case, the coupling is necessary for oscillations to occur. Os-
cillations can occur in the absence of coupling, however, at smaller values of v;.

Admittedly, the two-oscillator model is a much simplified caricature of the dy-
namics of the animal cell cycle. More detailed models have been proposed for both
the fission yeast and embryonic cell cycles.!7-23 In yeast there is a single cdk that
controls the onset of both the M and S phases in conjunction with different cyclins
and a cdk inhibitor.!81° The question arises whether a detailed exploration of these
more realistic models in parameter space could also produce results similar to those
presented here, in regard to alternating oscillations and/or chaos in the time evolu-
tion of the different cdk—cyclins complexes. A virtue of the present skeleton model
is that it brings to light the sorts of dynamic behavior that are expected to occur as a
result of the coupling between two oscillators controlling the S and M phases.

We have focused here on the case where the mutual coupling is achieved through
inhibition of cyclin synthesis. As shown in FIGURE 5, similar results, including anti-
symmetric and chaotic oscillations, are also obtained when the coupling is exerted
through the activation of cyclin degradation in one oscillator by the cdk belonging
to the other oscillator. The results are also recovered, to a large extent, when a limited
degree of asymmetry is introduced for the parameter values of the two oscillators.

In contrast to the present approach, some authors have suggested that the cell cy-
cle is not described by a limit cycle oscillator but rather by a bistability phenomenon,
each steady state corresponding to a particular phase (M or S) of the cell cy-
cle.20:32-34 We do not think, however, that the latter view necessarily contradicts the
limit cycle description. Indeed, to account for the succession of cell cycle phases, the
approach based on bistability corresponds to a sequence of “frozen frames.” Includ-
ing the variation of control parameters, so as to link these frames continuously with
one another, should confer a recurrent (i.e., oscillatory) nature on the sequence of
events which, each on its own, can be interpreted in terms of bistability.

Our results can be related to those obtained in the study of other biological oscil-
lators coupled through mutual inhibition. Of particular interest in this respect is the
analysis of a model of two mutually inhibiting pacemaker neurons carried out by
Borisyuk ef al.3> These authors also obtained in that different context evidence for
both antisymmetric and chaotic oscillations. The present study shows that if the cell
cycle is governed by two biochemical oscillators coupled through mutual inhibition,
the most prevalent mode of dynamic behavior will be that of periodic, alternating os-
cillations corresponding to the ordered sequence of the cell cycle phases. Our results
indicate, however, that besides this physiological situation, depending on the
strength of mutual inhibition, such a coupling may also give rise to more complex
dynamic phenomena including chaos.

SUMMARY

The animal cell cycle is controlled by the periodic variation of two cyclin-depen-
dent protein kinases, cdk1 and cdk2, which govern the entry into the M (mitosis) and
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S (DNA replication) phases, respectively. The ordered progression between these
phases is achieved thanks to the existence of checkpoint mechanisms based on mu-
tual inhibition of these processes. Here we study a simple theoretical model for os-
cillations in cdkl and cdk2 activity, involving mutual inhibition of the two
oscillators. Each minimal oscillator is described by a three-variable cascade involv-
ing a cdk, together with the associated cyclin and cyclin-degrading enzyme. The dy-
namics of this skeleton model of coupled oscillators is determined as a function of
the strength of their mutual inhibition. The most common mode of dynamic behav-
ior, obtained under conditions of strong mutual inhibition, is that of alternating os-
cillations in cdkl and cdk2, which correspond to the physiological situation of the
ordered recurrence of the M and S phases. In addition, for weaker inhibition we ob-
tain evidence for a variety of dynamic phenomena such as complex periodic oscilla-
tions, chaos, and the coexistence between multiple periodic or chaotic attractors. We
discuss the conditions of occurrence of these various modes of oscillatory behavior,
as well as their possible physiological significance.
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