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We investigate the various types of complex Ca2+ oscillations which can arise in a
model based on the mechanism of Ca2+-induced Ca2+ release (CICR), that takes into
account the Ca2+-stimulated degradation of inositol 1,4,5-trisphosphate (InsP3) by
a 3-kinase. This model was previously proposed in the course of an investigation of
plausible mechanisms capable of generating complex Ca2+ oscillations (Borghans
et al., 1997). Besides simple periodic behavior, this model for cytosolic Ca2+ os-
cillations in nonexcitable cells shows complex oscillatory phenomena like bursting
or chaos. We show that the model also admits a coexistence between two stable
regimes of sustained oscillations (birhythmicity). The occurrence of these various
modes of oscillatory behavior is analysed by means of bifurcation diagrams. Com-
plex oscillations are characterized by means of Poincar´e sections, power spectra
and Lyapounov exponents. The results point to the role of self-modulation of the
InsP3 signal by 3-kinase as a possible source for complex temporal patterns in Ca2+
signaling.

c© 1999 Society for Mathematical Biology

1. INTRODUCTION

A large variety of cell types display Ca2+ oscillations after stimulation by an
extracellular agonist such as a hormone or a neurotransmitter (Berridge, 1993,
1997; Berridge and Dupont, 1994; Thomaset al., 1996). In most cell types, these
oscillations take the form of repetitive sharp spikes in the level of cytosolic Ca2+.
Typically, the cytosolic Ca2+ concentration varies from less than 0.1µM up to
1 µM with a periodicity that ranges from a few seconds to 30 minutes. In nearly
all cell types the frequency of Ca2+ oscillations is seen to increase with the level of
stimulation, a phenomenon that strongly suggests that the external signal is encoded
in terms of the temporal pattern of Ca2+ oscillations. Although the pathway between
the successive Ca2+ spikes and the cellular response remains poorly understood in
most cell types, there is increasing evidence pointing to a physiological role for these
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oscillations (Ozil and Swann, 1995; Thomaset al., 1996). Of particular interest
in this respect is the recent demonstration that Ca2+ oscillations of appropriate
frequency may increase the efficiency and specificity of gene expression (Dolmetsch
et al., 1998; Liet al., 1998).

In the vast majority of cells, the external stimulus triggers the synthesis of in-
ositol 1,4,5-trisphosphate (InsP3), an intracellular messenger known to bind to
receptors located on the membrane of the endoplasmic reticulum, thereby initi-
ating the release of Ca2+ into the cytosol. As the release of Ca2+ through the
InsP3 receptor/Ca2+ channel is activated by Ca2+ itself, Ca2+ release in the cytosol
possesses an autocatalytic nature which is responsible for Ca2+ oscillations under
appropriate conditions. This phenomenon by which cytosolic Ca2+ activates its
own release from the intracellular stores is known as Ca2+-induced Ca2+ release
(CICR). CICR was originally described for muscle (Endoet al., 1970) and cardiac
cells (Fabiato and Fabiato, 1975), but was later found to occur in a variety of other
cell types (Berridge, 1993). Numerous models based on CICR have been proposed
to account for the existence and for the main properties of these oscillations (for
reviews, see Dupont and Goldbeter, 1992; Chay, 1993a; Sneydet al., 1995; Gold-
beter, 1996; Tanget al., 1996; Dupont, 1999).

In some cell types, particularly in hepatocytes, complex Ca2+ oscillations rem-
iniscent of the bursting-like behavior displayed by many electrically excitable
cells have been observed in response to stimulation by specific agonists (Green
et al., 1993; Marreroet al., 1994). As these cells are not electrically excitable, it
is likely that these complex Ca2+ oscillations rely on the interplay between two in-
tracellular mechanisms capable of destabilizing the steady state. Some theoretical
models have been proposed to account for such complex Ca2+ oscillations (Chayet
al., 1995; Shen and Larter, 1995; Borghanset al., 1997). Among these models, the
one based on the interplay between CICR at the level of the InsP3 receptor and the
Ca2+-stimulated InsP3 degradation (Borghanset al., 1997) appears to be of particu-
lar interest. First, this model is based on the well characterized stimulation by Ca2+
of the activity of inositol 1,4,5-trisphosphate 3-kinase, one of the InsP3 metaboliz-
ing enzymes (Takazawaet al., 1989, 1990). Second, this model can generate a large
variety of dynamical behaviors, including deterministic chaos and Ca2+ oscillations
of the bursting type that much resemble experimental observations [see Figs 1 and
8 of Borghanset al. (1997) for a comparison between experimental and theoretical
oscillations].

The goal of the present study is to investigate in more detail the conditions in
which complex oscillatory phenomena occur in that model, and to characterize
more thoroughly the various modes of dynamical behavior that can be obtained,
i.e., simple periodic oscillations of the limit cycle type, bursting, quasiperiodic
oscillations, and deterministic chaos. In Section 2, we first briefly present the model
previously proposed for complex Ca2+ oscillations. In Section 3, we investigate the
relationship between the level of stimulation and the frequency of Ca2+ oscillations
in the case of simple periodic behavior to determine whether this model can account
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for the observed increase in the frequency of Ca2+ oscillations with the degree of
stimulation. Two antagonistic effects are indeed at play: an increase in InsP3 is
expected to lead to an increase in the frequency of Ca2+ spikes, but at the same
time the InsP3-induced rise in Ca2+ will also lead to increased InsP3 hydrolysis due
to the Ca2+ activation of the InsP3 3-kinase. In Section 4, we present the various
types of complex dynamical behavior that can be exhibited by the model. Bursting,
chaos and quasiperiodicity are considered in turn. In Section 5, we study by means
of bifurcation diagrams how these complex temporal patterns appear and disappear
as a function of the degree of stimulation. We also show that the model can display
birhythmicity, i.e., the coexistence between two stable limit cycles. In Section 6, we
characterize these dynamical behaviors by means of return maps, power spectra and
evaluation of Lyapounov exponents. The results are discussed in Section 7, both
with respect to their possible physiological significance and to the potential role of
the Ca2+-activated InsP3 degradation as a source for complex Ca2+ oscillations.

2. MODEL FOR CA2+ OSCILLATIONS INVOLVING CA2+-ACTIVATED

INSP3 DEGRADATION

The model used in the present study is an extension of the minimal model pro-
posed by Dupont and Goldbeter (1993) to account for the existence of simple Ca2+
oscillations in response to extracellular stimulation. The original model only in-
volves two variables, namely cytosolic and intravesicular Ca2+ concentrations. The
release of Ca2+ from the internal stores into the cytosol is activated by InsP3 and
cytosolic Ca2+; such an autocatalytic process of InsP3-sensitive CICR is at the core
of the oscillatory mechanism. Oscillations of Ca2+ in this basic model do not re-
quire, and are not accompanied by, a periodic variation in InsP3, in agreement with
observations which show that repetitive Ca2+ spikes may occur in the presence of
a constant level of InsP3 (Wakui et al., 1989; Berridge, 1993). However, although
it is highly plausible that CICR is the primary oscillatory mechanism, the concen-
tration of InsP3 most probably evolves nonmonotonously in the course of time.
InsP3, which is a second messenger, is synthesized by phospholipase C (PLC) in
response to external stimulation and metabolized into InsP2 by a 5-phosphatase and
into InsP4 by a 3-kinase (Takazawaet al., 1990; Berridge, 1993). An oscillatory
variation of InsP3 could result from the control of any of these three enzymes by
Ca2+. In support of such a possibility, some experiments report that the activity of
PLC is stimulated by Ca2+ (Renardet al., 1987); the activation of the 3-kinase by
Ca2+ is even better documented (Takazawaet al., 1989, 1990).

Stimulation of PLC activity by Ca2+ has been taken into account in some the-
oretical models (Meyer and Stryer, 1988; Keizer and De Young, 1992; Shen and
Larter, 1995). One of these models (Shen and Larter, 1995) can exhibit bursting-
type oscillations (also called mixed-mode oscillations) as well as chaos; the level
of cytosolic Ca2+ returns in both cases to its basal value between successive Ca2+
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Figure 1. Schematic representation of the model based on the interplay between CICR and
the Ca2+-stimulated degradation of InsP3 (see text for details). Besides simple periodic
oscillations, this model can produce complex Ca2+ oscillations including bursting, chaos,
quasiperiodic behavior, as well as birhythmicity.

spikes. Such a temporal pattern does not resemble the behavior seen in hepatocytes
stimulated by various agonists such as cAMP (Capiodet al., 1991), taurolitho-
cholate 3-sulfate (Marreroet al., 1994), diadenosine 5′, 5′′′-P1P4-tetraphosphate
(Greenet al., 1993), ATP or both ATP and cAMP (Dixonet al., 1993, 1995; Green
et al., 1994). With these agonists, bursting in hepatocytes takes the form of a switch
between a silent phase and an active phase made of small-amplitude Ca2+ oscil-
lations around an elevated Ca2+ level. The latter type of complex oscillations can
be obtained in numerical simulations when extending the model based on CICR to
take into account the stimulation of InsP3 3-kinase activity by the Ca2+/calmodulin
complex, as shown by Borghanset al. (1997). The present paper aims at inves-
tigating in further detail the occurrence of complex oscillations in this extended
model, which also incorporates Ca2+ pumping into the stores, Ca2+ exchange with
the external medium, as well as stimulus-activated Ca2+ entry (Dupont and Gold-
beter, 1993; Borghanset al., 1997).

The model, schematized in Fig. 1, contains three variables, namely the concen-
trations of free Ca2+ in the cytosol (Z) and in the internal pool (Y), and the InsP3
concentration (A). The time evolution of these variables is governed by the follow-
ing ordinary differential equations:

d Z

dt
= Vin − V2+ V3+ k f Y − kZ (1a)
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dY

dt
= V2− V3− k f Y (1b)

d A

dt
= βV4− V5− εA, (1c)

where

Vin = V0+ V1β (2)

V2 = VM2
Z2

K 2
2 + Z2

(3)

V3 = VM3
Zm

K m
Z + Zm

Y2

K 2
Y + Y2

A4

K 4
A + A4

(4)

V5 = VM5
Ap

K p
5 + Ap

Zn

K n
d + Zn

. (5)

In these equations,V0 refers to a constant input of Ca2+ from the extracellular
medium andV1 is the maximum rate of stimulus-induced influx of Ca2+ from the
extracellular medium. Parameterβ reflects the degree of stimulation of the cell
by an agonist and thus only varies between 0 and 1. The ratesV2 and V3 refer,
respectively, to pumping of cytosolic Ca2+ into the internal stores and to the release
of Ca2+ from these stores into the cytosol in a process activated by cytosolic calcium
(CICR); VM2 andVM3 denote the maximum values of these rates. ParametersK2,
KY, KZ and K A are threshold constants for pumping, release, and activation of
release by Ca2+ and by InsP3; k f is a rate constant measuring the passive, linear
leak of Y into Z; k relates to the assumed linear transport of cytosolic Ca2+ into
the extracellular medium;V4 is the maximum rate of stimulus-induced synthesis of
InsP3. V5 is the rate of phosphorylation of InsP3 by the 3-kinase; it is characterized
by a maximum valueVM5 and a half-saturation constantK5.

The fact that the 3-kinase is stimulated by Ca2+ — through the formation of a
Ca2+/calmodulin complex which is not explicitly considered in the model — is
taken into account through a term of the Hill form, with a threshold Ca2+ level
equal toKd. That InsP3 can also be metabolized in a Ca2+-independent manner
by the 5-phosphatase is reflected by the term−εA, which can be assumed to be
of the first-order given that the latter enzyme has a low affinity for its substrate,
of the order of 10µM (Verjanset al., 1992). This term is significant when the
level of cytosolic Ca2+ is very low, i.e., when the termV5 becomes negligible
in equation (1c). Equations (3–5) allow for cooperativity in the kinetics of Ca2+
release, Ca2+ pumping and InsP3 phosphorylation by the 3-kinase;m, n and p
are Hill coefficients related to the cooperative processes. Experimental evidence
indicates that the 3-kinase behaves as a Michaelian enzyme with respect to its
substrate InsP3, hencep = 1 (Takazawaet al., 1989). The results indicate that
complex oscillations, including chaos, can occur both in the presence (p > 1) or
absence (p = 1) of cooperativity in the kinetics of 3-kinase.
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3. DEPENDENCE OF THE FREQUENCY OF SIMPLE PERIODIC CA2+
OSCILLATIONS ON THE DEGREE OF STIMULATION

Intracellular Ca2+ oscillations take the form of abrupt spikes, sometimes preceded
by a gradual increase in cytosolic Ca2+. They only occur in a range bounded by two
critical values of the stimulation level, with the frequency of the spikes increasing
with the intensity of the stimulus. These properties are well accounted for by the
model, as illustrated in Fig. 2. Figure 2(a) shows typical Ca2+ oscillations generated
by the model. Here, in contrast to the original model (Dupont and Goldbeter, 1993),
these oscillations are necessarily accompanied by periodic variations in the level
of InsP3. As can be expected from the regulations considered, the peak in InsP3

slightly precedes the peak in cytosolic Ca2+. The bifurcation diagram [Fig. 2(b)]
shows the steady-state value of cytosolic Ca2+ (Z), when it is stable, or the maxima
and minima reached during oscillations when it is unstable. As in the minimal
model for Ca2+ oscillations (Dupont and Goldbeter, 1993), the steady-state value
of cytosolic Ca2+ increases with the level of stimulation,β, and the amplitude
of the oscillations remains practically constant over the whole oscillatory domain
bounded by two supercritical Hopf bifurcation points. The frequency of oscillations
increases with the level of external stimulation [Fig. 2(c)].

The relationship between the level of stimulation and the frequency of Ca2+
oscillations shown in Fig. 2(c) is in good qualitative agreement with experimental
observations. However, numerical simulations of the model defined by equations
(1)–(5) show that this is not always the case. For example, depending on the
maximal rate of phosphorylation of InsP3 by the 3-kinase (VM5), we observe that the
frequency of the oscillations increases monotonously with the degree of stimulation
β (as in Fig. 2 and in Fig. 3, curve a, where the value ofVM5 is small) or may
pass through a minimum as a function ofβ (as in Fig. 3, curve b, in whichVM5

is larger). In the model, increasing the level of stimulation triggers a rise first
in the rate of synthesis and then in the rate of degradation of InsP3 (due to the
enhanced stimulation of the 3-kinase by Ca2+). This explains why, depending on
relative parameter values, qualitatively distinct relationships between the degree of
stimulation and the frequency of Ca2+ oscillations can be obtained.

These different relationships are illustrated in Fig. 3 for distinct values of param-
eterVM5, which represents the maximum rate of InsP3 degradation by 3-kinase. For
high values ofVM5 (curve b), the latter enzyme significantly regulates the level of
InsP3, which does not vary much with the level of stimulation (β). The Ca2+ con-
centration indeed rises as a function ofβ, and thus InsP3 metabolism is enhanced
(through the activation of InsP3 3-kinase). Hence, at the beginning of the oscillatory
domain, the increase in cytosolic Ca2+ due to the rise inβ [equation (2)] produces
a slight decrease in InsP3: the rate of Ca2+ release then decreases asβ rises and,
as a consequence, the frequency decreases. Beyondβ = 0.16, however, a switch
occurs: the synthesis of InsP3 rises more withβ than the Ca2+-induced degradation
of InsP3, so that the frequency of oscillations rises asβ increases. For another set of
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Figure 2. Simple oscillations of Ca2+ and InsP3 in the model based on the interplay
between CICR and the Ca2+-stimulated degradation of InsP3. (a) Temporal evolution of
the concentrations of cytosolic calcium (Z, solid line) and InsP3 (A, dashed line). The
curves have been obtained by numerical integration of the model defined by equations (1)–
(5) with the following parameter values:β = 0.6, ε = 0.1 min−1, k = 10 min−1,
K2 = 0.1µM, K A = 0.2µM, Kd = 0.4µM, k f = 1 min−1, K5 = 1µM, KY = 0.2µM,
KZ = 0.5 µM, V0 = V1 = 2 µM min−1, VM5 = 5 µM min−1, VM2 = 6 µM min−1,
VM3 = 20µM min−1, V4 = 2 µM min−1, m = p = 2, n = 4. (b) Bifurcation diagram
giving the steady state (stable or unstable) and the envelope of the oscillations inZ as a
function ofβ for the same set of parameter values. (c) Relationship between the frequency
of Ca2+ oscillations and the level of stimulation in the same conditions.

parameter values, the frequency can even decrease in the entirety of the oscillatory
domain as the level of stimulation increases (data not shown). In contrast, for lower
values ofVM5 (curve a), the rate of InsP3 synthesis by PLC exceeds the activity of
3-kinase in the whole oscillatory domain. Thus, even at low stimulation level, the
frequency always increases withβ, in agreement with experimental observations.
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Figure 3. Different relationships between the frequency of Ca2+ oscillations and the level
of stimulation in the model based on the interplay between CICR and the Ca2+-stimulated
degradation of InsP3. Parameter values are the same as in Fig. 2, except forVM5 which is
equal to 5µM min−1 in (a) — as in Fig. 2(c) — and 15µM min−1 in (b).

As an inverse relationship between the frequency of Ca2+ oscillations and the
level of stimulation has never been experimentally reported, the present theoretical
results suggest that Ca2+ oscillations are not primarily affected by variations in
the level of InsP3 due to the stimulation of 3-kinase activity by Ca2+. This result
corroborates the view that in most cell types [except some cells like hippocampal
neurons; see Mailleuxet al. (1991)], in physiological conditions, InsP3 metabolism
is mainly carried out by the InsP3 5-phosphatase — the action of which is reflected
by the term−εA in equation (1c) — because of the high maximum activity of
this enzyme relative to that of the 3-kinase (De Smedtet al., 1997; Dupont and
Erneux, 1997). The present results suggest, however, that unusual relationships
between the level of stimulation and the frequency of Ca2+ oscillations could be
observed in cells overexpressing InsP3 3-kinase.

4. COMPLEX CA2+ OSCILLATIONS: BURSTING, QUASIPERIODICITY

AND CHAOS

Although simple Ca2+ oscillations resembling those shown in Fig. 2 are usu-
ally observed in response to external stimulation, complex oscillations have also
been reported in experiments performed with hepatocytes responding to a variety
of agonists (Greenet al., 1993; Marreroet al., 1994). A detailed investigation of
the dynamic behavior of the model in parameter space allowed us to uncover re-
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Table 1. Parameter values corresponding to the various types of complex oscillatory be-
havior observed in the model defined by equations (1)–(5).

Parameters Bursting Chaos Quasiperiodicity
β 0.46 0.65 0.51
K2 (µM) 0.1 0.1 0.1
K5 (µM) 1 0.3194 0.3
K A (µM) 0.1 0.1 0.2
Kd (µM) 0.6 1 0.5
KY (µM) 0.2 0.3 0.2
KZ (µM) 0.3 0.6 0.5
k (min−1) 10 10 10
k f (min−1) 1 1 1
ε (min−1) 1 13 0.1
n 2 4 4
m 4 2 2
p 1 1 2
V0 (µM min−1) 2 2 2
V1 (µM min−1) 2 2 2
VM2 (µM min−1) 6 6 6
VM3 (µM min−1) 20 30 20
VM4 (µM min−1) 2.5 3 5
VM5 (µM min−1) 30 50 30

gions of complex Ca2+ oscillations, including bursting, chaos and quasiperiodicity.
Three sets of parameter values corresponding to these modes of complex oscillatory
behavior are listed in Table 1.

The different types of oscillations are illustrated in Fig. 4, both as a function of
time (left column) and in the phase space (right column). For oscillations of the
bursting type, a large-amplitude Ca2+ spike is followed by smaller Ca2+ variations
around a plateau level [Fig. 4(a)]. The corresponding attractor is plotted in Fig. 4(d).
After a first, large Ca2+ spike, InsP3 is metabolized by the 3-kinase which has been
massively activated by Ca2+; enough InsP3, however, remains to allow for some
repetitive Ca2+-releasing activity through CICR, producing small-amplitude spikes,
up to a point where the levels of cytosolic and intravesicular Ca2+ are both too low
to activate Ca2+ release.

As illustrated in Fig. 4(b), aperiodic, chaotic oscillations are usually of reduced
amplitude and never undergo large excursions in the phase space [see Fig. 4(e)],
as compared to the case of bursting [Fig. 4(a) and (d)]. The irregularity of the
oscillations shows up both in the amplitude and in the time interval between suc-
cessive Ca2+ spikes. From a practical point of view, these intrinsically irregular
oscillations might be hard to distinguish from a noisy experimental record of low-
amplitude periodic Ca2+ oscillations. In this respect, it is of interest that an analysis
of experimentally obtained time series of Ca2+ oscillations showed that in some
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Figure 4. Various types of complex Ca2+ oscillations that can be obtained in the model
based on the interplay between CICR and the Ca2+-stimulated degradation of InsP3. From
top to bottom, these complex behaviors correspond to bursting, chaos and quasiperiodicity.
The panels on the left show the time evolution of cytosolic Ca2+ concentration while
the right panels show the corresponding attractors in the phase space. Results have been
obtained by numerical integration of the model defined by equations (1)–(5) for the three
sets of parameter values listed in Table 1, where the first column refers to (a) and (d), the
second column to (b) and (e), and the third column to (c) and (f).
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Figure 5. Stability diagrams showing the domains of (a) bursting, (b) quasiperiodicity, and
(c) chaos as well as other modes of complex oscillatory behavior. Notations are: SSS for
stable steady state, OSC for simple periodic oscillations, QP for quasiperiodicity, PD for the
beginning of the period-doubling sequences, CHAOS for areas of chaotic dynamics, and B
for regions of birhythmicity. The diagrams have been established by numerical integration
of equations (1)–(5) with the parameter values listed in the first, second and third columns of
Table 1 for (a), (c) and (b), respectively. The four horizontal dashed lines represent sections
through the domains of distinct dynamic behaviors, which correspond to the bifurcation
diagrams presented in Fig. 6.

cases the Ca2+ dynamics can be casted into low-dimensional chaos (Strizhaket
al., 1995). A typical strange attractor corresponding to the chaotic dynamics of
Fig. 4(b) is shown in Fig. 4(e). Finally, Fig. 4(c) shows an example of quasiperiodic
oscillations obtained with the model. Such a kind of oscillatory behavior, charac-
terized by the existence of multiple frequencies (Berg´e et al., 1984), has been less
often reported for biochemical systems. Although the time series greatly resemble
the chaotic one, quasiperiodicity is easily recognizable in phase space in which all
trajectories are concentrated on a torus [Fig. 4(f)].

The domains in which the various modes of complex oscillatory behavior occur in
the model are illustrated in Fig. 5 by the stability diagrams established as a function
of parametersε andβ which measure, respectively, the degradation of InsP3 by
the 5-phosphatase and the degree of cell stimulation. Figure 5(a)–(c) correspond
to the three sets of parameter values listed in Table 1. In Fig. 5(a), a domain of
bursting is nested within the domain of simple periodic behavior. In Fig. 5(b),
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a small domain of quasiperiodicity is nested within a domain of simple periodic
oscillations. In Fig. 5(c), multiple nested domains are found in which, from the
center to the periphery, simple periodic oscillations exhibiting a small shoulder (see
thin curve in the left panel of Fig. 8) are followed, successively, by birhythmicity,
chaos, period-doublings, simple periodic oscillations, and stable steady states.

In the next section, we will discuss from a dynamical point of view the origin of
these various modes of complex oscillatory behavior. To this end, we have chosen
to use the particular sets of parameter values listed in Table 1 for each mode of
complex oscillations, keepingβ free to vary as bifurcation parameter.

5. BIFURCATION DIAGRAMS FOR THE THREE TYPES OF COMPLEX

OSCILLATIONS

5.1. Bursting. Figure 6(a) shows a typical bifurcation diagram illustrating the
origin of bursting in the model based on the interplay between CICR and Ca2+-
stimulated degradation of InsP3. This bifurcation diagram represents a horizontal
section (dashed line) through the diagram of Fig. 5(a). The level of stimulation,
β, is considered as the most relevant bifurcation parameter since it is more readily
amenable to experimental manipulation. Shown are the steady state, if stable, and
the maxima and minima of cytosolic Ca2+ (Z) reached during oscillations when
the steady state is unstable. The first limit cycle arises through a Hopf bifurcation
at β = 0.153 and loses its stability atβ = 0.369. A rapid sequence of bursting
states can be seen for increasing stimulation levels; in this region of the bifurcation
diagram, the number of peaks during the active phase of bursting increases withβ.
The complex oscillations disappear abruptly, and the steady state becomes stable
again atβ = 0.483. Figure 7 shows that, at this critical point, the period of
oscillations tends to infinity, a feature characteristic of a homoclinic bifurcation.
Also noticeable in Fig. 7 is the fact that the period increases in a stepwise manner
with β, because the number of spikes in the plateau phase increases at each step.
Figure 6(a) and subsequent bifurcation diagrams have been obtained by numerical
integration of equations (1)–(5). Similar results have also been obtained in part
using the program AUTO (Doedel, 1981), but only the first bifurcations were found
with this method.

5.2. Chaos. In the bifurcation diagram shown in Fig. 6(b), representing a horizon-
tal section forε = 13 min−1 in the diagram of Fig. 5(c), complex Ca2+ oscillations
both appear and disappear by period-doubling, following the Feigenbaum sequence
which is one of the best known routes leading to chaos (Berg´e et al., 1984). The
chaotic region contains narrow windows of periodicity. This bifurcation diagram
is qualitatively similar to the one obtained by Shen and Larter (1995) in a different
model for complex Ca2+ oscillations. However, a major quantitative difference
between the two diagrams pertains to the range of stimulation levels in which com-
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Figure 6. Bifurcation diagrams showing the appearance and disappearance of (a) bursting,
(b) chaos, (c) chaos and birhythmicity and (d) quasiperiodicity as a function ofβ. These
diagrams have been established by numerical integration of equations (1)–(5) for the same
parameter values as in Figs 4 and 5. (a) Corresponds to the section (dashed line) shown
in Fig. 5(a). (b) and (c) Correspond to the sections (dashed lines) shown in Fig. 5(c) for
ε = 13 min−1 andε = 11 min−1, respectively. (d) Corresponds to the section (dashed
line) shown in Fig. 5(b).

plex oscillations occur: this range, which here extends fromβ = 0.61 to 0.68, is
at least ten times larger in the present model. For some other parameter values,
regions of bursting and chaos can both be observed in the same bifurcation diagram
established as a function ofβ (data not shown).
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Figure 7. Relationship between the period of Ca2+ oscillations and the level of stimulation
for a set of parameter values corresponding to oscillations of the bursting type. Parameter
values are the same as in Fig. 4(a) and (d) and Fig. 5(a). At the right extremity of the
oscillatory domain (β = 0.483), the period tends to infinity, which denotes the existence
of a homoclinic bifurcation.

5.3. Birhythmicity. With the same set of parameter values as in Fig. 6(b), except
for ε which is slightly smaller (ε = 11 min−1 instead of 13 min−1), one can
observe birhythmicity in the bifurcation diagram [Fig. 6(c), see also Fig. 5(c)].
This behavior corresponds to the coexistence of two stable limit cycles for the same
values of the parameters. Here, birhythmicity arises by a phenomenon of hysteresis
involving multiple branches of oscillatory behavior separated by an unstable limit
cycle, between the two limit points inβ = 0.509 andβ = 0.521 [see inset to
Fig. 6(c), illustrating for the maxima ofZ the coexistence between the two types
of stable oscillations]. For stimulation levels betweenβ = 0.509 andβ = 0.518,
oscillations coexist with a chaotic regime. Betweenβ = 0.518 andβ = 0.521, two
stable limit cycles coexist. These two limit cycles are represented simultaneously
in Fig. 8, where (a) represents the temporal evolution of cytosolic Ca2+ and (b) the
two limit cycles in the phase plane(Z,Y). The two stable cycles are shown for
β = 0.520 in Fig. 8(b), together with the corresponding oscillations inZ [Fig. 8(a)].

The unstable cycle [dashed line in the inset to Fig. 6(c)] separates the attraction
basins of the two stable oscillatory regimes. Thus, as illustrated in Fig. 9, when
starting from the simple periodic oscillations in the case of Fig. 8, a perturbation
in the form of a small increase in cytosolic Ca2+ (Z) will cause a transition to the
periodic oscillations with a small shoulder. Numerical simulations indicate that
the attraction basin of the small cycle is much more reduced than that of the larger
cycle.

Furthermore, a phenomenon of period-adding is also seen inβ = 0.509 in the
bifurcation diagram shown in Fig. 6(c): periodic Ca2+ oscillations with a small
shoulder (corresponding to the appearance of an additional intermediate pair of
maxima and minima inZ) can be observed fromβ = 0.509 (where they coexist with
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Figure 8. (a) Temporal evolution of cytosolic Ca2+ and (b) limit cycles in the(Z,Y)
phase plane for the two stable coexisting cycles in the region of birhythmicity. The curves
are obtained by numerical integration of equations (1)–(5), starting from different initial
conditions. Parameter values are those listed in the second column of Table 1, except forβ

which is equal to 0.52 andε which is equal to 11 min−1.
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Figure 9. Transition between two types of coexisting, periodic oscillations following a
small increase in the cytosolic Ca2+ level from 0.322µM to 0.330µM in the conditions
of birhythmicity. Parameter values are the same as in Fig. 8.

chaotic oscillations) to 0.640, at which value another domain of chaotic oscillations
begins.

5.4. Quasiperiodicity. Quasiperiodic oscillations appear and disappear through a
torus bifurcation in which the limit cycle undergoes a secondary Hopf bifurcation, as
shown in Fig. 6(d), which represents a section (dashed line) through the diagram of
Fig. 5(b). For this reason, the system now possesses two natural incommensurable
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frequencies. Thus, the trajectories in the phase space tend to cover a torus, as can
be seen in Fig. 4(f).

6. CHARACTERIZATION OF COMPLEX OSCILLATIONS

The various types of complex oscillations are hardly distinguishable from the sole
examination of the time series and the associated phase space attractors. Several
methods have been developed to characterize these behaviors (Berg´e et al., 1984).
In a first step, we have characterized bursting, chaos and quasiperiodic oscillations
by use of Poincar´e sections. This has been done for the three cases listed in Table 1,
corresponding to the examples of bursting, chaos, and quasiperiodicity illustrated in
Fig. 4. We have also obtained the power spectra associated with these three types of
oscillations. Finally, the Lyapounov exponents used to characterize the sensitivity
to initial conditions (and thus to indicate the presence of chaos) have been obtained
over the whole range of possibleβ values, in each of the three cases considered in
Fig. 4.

6.1. First return maps. To build first return maps, we plot the maximum value of
one variable of the system (hereZ, the cytosolic Ca2+ concentration) as a function
of the value of its preceding maximum. We have performed such an analysis, and
have plotted in Fig. 10 the results obtained when considering various numbers of
successive maxima in cytosolic Ca2+: 5 (first row), 10 (second row), 20 (third
row) and 100 (fourth row). In the case of simple, regular oscillations, such a map
consists of a single point. For complex oscillations, as can be seen in Fig. 10 there is
a clear distinction between the three return maps corresponding to bursting, chaos
or quasiperiodicity in the model considered for complex Ca2+ dynamics. In the
case of bursting (Fig. 10, first column), the map consists of five points, reflecting
the number of peaks per period obtained for the particular set of parameter values
considered. In the case of chaos (Fig. 10, second column), the map tends to be
continuous, with an inverted bell-shaped form, resembling that found for a large
variety of chaotic systems. Finally, for the quasiperiodic oscillations (Fig. 10, third
column), the map takes the form of a closed curve. The use of first return maps
thus appears to be most appropriate for distinguishing between the different types
of complex oscillatory behavior. Figure 10 indicates, however, that a minimum
number of successive maxima must be used to reach unambiguous conclusions.
Thus, in Fig. 10, the asymptotic shape (bottom row) of the return map for chaos and
quasiperiodicity begins to be distinguishable for a time series containing 10 peaks,
but the picture becomes clearer when 20 maxima are considered.

6.2. Power spectra. Figure 11 represents the Fast Fourier Transform (Garcia,
1994) of the various temporal data shown in Fig. 4. For bursting [Fig. 11(a)],
we can distinguish the natural frequencies of the system [in the case considered,
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Figure 10. Characterization of complex Ca2+ oscillations by means of first return maps.
Shown are the return maps obtained for bursting (column 1); chaos (column 2); and
quasiperiodicity (column 3) for time series containing 5 (row 1), 10 (row 2), 20 (row 3) and
100 (row 4) successive maxima in cytosolic Ca2+ (Z). For each return map, the value of
the (n + 1)th peak inZ is plotted versus thenth peak value. Results have been obtained
numerically in the same conditions as (a)–(c) in Fig. 4.

all the lines are multiples of 0.33 min−1, which is the smallest natural frequency,
corresponding to the period of the bursting oscillations shown in Fig. 4(a)]. These
natural frequencies are combined in the spectrum with their harmonics. For the
chaotic dynamics [Fig. 4(b)], the spectrum [Fig. 11(b)] takes a continuous form,
with a larger peak which is reminiscent of the frequencyνCL of the unstable limit
cycle from which chaos originates (this frequency is obtained by mean of AUTO as
νCL = 0.745 min−1). The quasiperiodic spectrum [Fig. 11(c)] corresponding to the
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Figure 11. Power spectra corresponding to the three types of complex Ca2+ oscillations
shown in Fig. 4. (a) Bursting; (b) chaos; (c) quasiperiodicity. Results have been obtained
by computing the square of the Fourier transform of the time evolution ofZ using a Fast
Fourier Transform method (FFT).

oscillations of Fig. 4(c) allows us to determine the two natural frequencies of the
system, which are incommensurable. The highest line in fact corresponds to the
frequency of the unstable limit cycle (given by AUTO asνCL ∼ 1.506 min−1) which
originates from the first Hopf bifurcation. The second and the third lines are the
two natural frequencies of the system (ν1 = 0.953 min−1 andν2 = 1.221 min−1),
while the first line corresponds to the differenceν2− ν1 = 0.268 min−1. The ratio
between these two natural frequencies is an irrational number close to 1.281.

6.3. Lyapounov exponents.A chaotic regime is characterized by the intrinsic
unpredictability of its time evolution, since two trajectories, initially indistinguish-
able, will diverge exponentially in the course of time. To analyse qualitatively and
quantitatively the dynamics of the system, it is useful to compute the Lyapounov
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Figure 12. Characterization of the three types of complex Ca2+ oscillations shown in Fig. 4
by computing their Lyapounov exponents (see text). Results have been obtained by using
the algorithm of Wolfet al. (1985).

exponents, which reflect the mean rate of divergence of trajectories initially close in
the phase space. Because our system is dissipative, the sum of the three exponents
must remain negative (Berg´e et al., 1984). The various attractors can be distin-
guished qualitatively by means of the sign of their Lyapounov exponents. We have
determined the Lyapounov exponents characterizing the dynamics of the system
over the whole rangeβ = 0 to 1. As shown by the bifurcation diagrams of Fig. 6,
complex oscillations of the bursting, chaotic or quasiperiodic types only occur in
windows ofβ values.

In the case of bursting [Fig. 12(a)], only one exponent goes to zero, while the other
two remain negative. This means that every perturbation from the cyclic trajectory
in the phase space [Fig. 4(d)] will be damped, except in one direction. For chaotic
dynamics [Fig. 12(b)], one Lyapounov exponent becomes positive [in the interval
marked by the two arrows in the inset of Fig. 12(b)], reflecting the fact that in
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this direction, two initially very slightly different trajectories will move apart; this
phenomenon corresponds to the well-known sensitivity to initial conditions. In the
case of quasiperiodicity [Fig. 12(c)], two exponents are equal to zero while the third
one is negative.

7. DISCUSSION

The present study is devoted to a thorough analysis of a model previously proposed
for complex Ca2+ oscillations, which takes into account both CICR and stimulation
by Ca2+ of InsP3 degradation by 3-kinase (Borghanset al., 1997). This model is
realistic as the two types of regulation by Ca2+ have been well characterized. The
model predicts that although simple periodic Ca2+ spiking is expected to be the most
commonly observed behavior, complex Ca2+ oscillations in the form of bursting
or chaos should also be seen in some nonexcitable cell types under appropriate
circumstances. Until now, bursting in Ca2+ oscillations has only been reported in
experimental studies in hepatocytes responding to appropriate stimuli (Capiodet
al., 1991; Greenet al., 1993; Dixonet al., 1993, 1995; Marreroet al., 1994). There
exists a high variability in the propensity of different hepatocytes from the same
line to display complex oscillations, which holds with the property of the model
that the regions of bursting and chaos in parameter space are relatively small. The
fact that these regions are much smaller than those of simple regular Ca2+ spiking
furthermore agrees with the experimental observation, that simple periodic Ca2+
spiking is much more common than complex Ca2+ oscillations.

In the present model, an increase in cytosolic Ca2+ has two opposite effects. On
one hand, due to CICR, it enhances the release of Ca2+ from internal stores. On the
other hand, due to 3-kinase stimulation by Ca2+, it brings about a decrease in InsP3,
which in turn reduces the rate of Ca2+ release into the cytosol. These counteracting
effects of Ca2+ are the source of bursting and chaos in the present model, because
the system somehow behaves as a periodically forced oscillator, for which complex
oscillations are known to occur (Strogatz, 1994; Goldbeter, 1996). Indeed, CICR,
which can proceed in the presence of a constant level of InsP3, provides a mechanism
for autonomous oscillations, while the signal (InsP3) that triggers oscillations is self-
modulated, as InsP3 raises the level of cytosolic Ca2+, which in turn decreases that
of InsP3 through the action of the Ca2+-activated 3-kinase.

Other mechanisms generating complex Ca2+ oscillations have been proposed.
Thus, as shown by Shen and Larter (1995), the interplay between CICR and the
stimulation of phospholipase C activity by Ca2+might also provide a realistic source
for bursting and chaos in Ca2+ signaling. However, in that model, complex Ca2+
oscillations only arise in a very small region of the parameter space, for example,
betweenβ = 0.600 andβ = 0.628 (chaos occurs over an even smaller range
of β values). Moreover, in contrast to the present results and to what is seen in
hepatocytes, the pattern of Ca2+ bursting obtained by Shen and Larter predicts
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that Ca2+ always returns to it basal level between successive spikes. Bursting was
also theoretically predicted in models involving the Ca2+-induced inactivation of
the InsP3R or the interplay between distinct Ca2+- and InsP3-sensitive Ca2+ pools
(Borghanset al., 1997). An inhibitory role of protein kinase C (PKC) in the origin
of bursting in hepatocytes has been stressed by Dixonet al. (1993, 1995) on the
basis of their experimental observations. According to these authors, this variety in
temporal patterns could arise because of differences in the negative feedback exerted
by PKC on G proteins coupled to the receptors. Such a regulation was incorporated
in a model for Ca2+ bursting (Chayet al., 1995), based on the activation of PLC by
Ca2+ coupled to both the indirect inhibition of the enzyme by PKC (itself activated
by Ca2+) and the Ca2+-induced inactivation of the InsP3-sensitive Ca2+ channel.

Complex Ca2+ oscillations of the bursting type are easily recognizable by the very
appearance of the time evolution of the cytosolic Ca2+ level. In contrast, chaotic
dynamics could be harder to distinguish from simple periodic oscillations. The
analysis performed here suggests that, provided that the available time series is
sufficiently long, the construction of first return maps should be the most straight-
forward method to distinguish periodic oscillations from aperiodic ones. Based
on such return maps, preliminary analysis of some experimental time series of
Ca2+ oscillations, obtained in pancreatic acinar cells and hepatocytes, led to the
conclusion that these time series could result from chaotic dynamics (Strizhaket
al., 1995). However, it should be kept in mind that to perform such an analysis
based on return maps, sufficiently long experimental time series must be obtained
in constant conditions, with a short sampling time and a low standard deviation.
Our results indicate (see Fig. 10) that a time series containing from 10 to 20 suc-
cessive maxima already allows one to distinguish between the various types of
oscillatory behavior, but the longer the time series, the more unambiguous are the
conclusions.

The physiological significance of aperiodic Ca2+ oscillations such as those shown
in Fig. 4(b) might be rather weak, both because they do not differ much from simple
periodic oscillations and because they would be rather unstable with respect to small
variations in the cellular parameters, given that the domain of chaos is much smaller
than that of periodic oscillations in parameter space. The present results as well
as those obtained in related models show, however, that well-known properties
of intracellular Ca2+ signaling can readily generate complex Ca2+ oscillations,
including chaos.

As to Ca2+ oscillations of the bursting type, the plateau phase during which Ca2+
remains elevated for a rather long period of time could serve to activate slower,
Ca2+-dependent processes. The possible physiological significance of oscillations
of the bursting type is supported by the fact that such oscillations are reminiscent
of those seen in electrically excitable cells, in which complex oscillations arise
from the interplay between a plasma-membrane oscillator and the InsP3R (Chay,
1993b, 1997; Keizer and De Young, 1993; Liet al., 1994; Chayet al., 1995).
In such cells, it is known that cellular processes are activated differently by Ca2+
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spiking or bursting; thus, in pancreaticβ cells, granular exocytosis is optimized by
long-duration Ca2+ bursting (Rorsman and Trube, 1986; Pipeleers, 1987).

Further experimental investigation of complex Ca2+ oscillatory dynamics would
be of great value, both because it might reveal important features concerning the
regulatory mechanisms underlying such Ca2+ oscillations, and because of the po-
tential physiological significance of the phenomenon. Together with the theoretical
results obtained in other models, the present work suggests that complex Ca2+
oscillations should be more widespread than usually thought. Our results point
to self-modulation of the InsP3 stimulus as a potential mechanism for generating
bursting and chaos in Ca2+ signaling.
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