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Coexistence of multiple propagating wave-fronts in a
regulated enzyme reaction model: link with birhythmicity

and multi-threshold excitability
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Abstract

We analyze the spatial propagation of wave-fronts in a biochemical model for a product-activated enzyme reaction
with non-linear recycling of product into substrate. This model was previously studied as a prototype for the

Ž .coexistence of two distinct types of periodic oscillations birhythmicity . The system is initially in a stable steady state
characterized by the property of multi-threshold excitability, by which it is capable of amplifying in a pulsatory
manner perturbations exceeding two distinct thresholds. In such conditions, when the effect of diffusion is taken into
account, two distinct wave-fronts are shown to propagate in space, with distinct amplitudes and velocities, for the
same set of parameter values, depending on the magnitude of the initial perturbation. Such a multiplicity of
propagating wave-fronts represents a new type of coexistence of multiple modes of dynamic behavior, besides the
coexistence involving, under spatially homogeneous conditions, multiple steady states, multiple periodic regimes, or a
combination of steady and periodic regimes. Q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The coexistence between multiple, simultane-
ously stable modes of dynamic behavior is a char-
acteristic property of non-linear systems in chem-

w xistry, physics and biology 1 . Under spatially ho-
mogeneous conditions, such a coexistence can
take different forms. The most common type of
coexistence is that of bistability, in which the
system can reach either one of two steady states
which are stable under the same conditions, i.e.
for a given set of parameter values. Several cases
of such bistability are known experimentally in
biochemistry, one of the first examples being that

w xof the peroxidase reaction 2 . Tristability, involv-
ing the coexistence of three stable steady states, is

w xalso known 3 . The phenomenon can in principle
be extended to involve even more stable steady
states, although the domain in parameter space
where such a multiplicity occurs is likely to be-
come smaller and smaller as the number of simul-
taneously stable states increases.

Another mode of coexistence, known as hard
w xexcitation 4 , refers to the evolution towards ei-

ther a steady state or a regime of sustained oscil-
lations of the limit cycle type, which are stable
under the same conditions. Several examples of
hard excitation are known, from a theoretical and
experimental point of view; to restrict the discus-
sion to biological systems, the phenomenon has

w xbeen demonstrated in neurobiology 5 and in a
w xcardiac preparation 6 . Finally, a third type of

w xcoexistence is that of birhythmicity 7,8 , which is
the rhythmic counterpart of bistability: two
regimes of sustained oscillations of the limit cycle
type may coexist for a given set of parameter
values. The phenomenon has not yet been
observed experimentally in biological systems, but
its occurrence in chemical oscillatory reactions

w xwas demonstrated in a number of cases 9]11
after its theoretical prediction in a model for a

w xmultiply regulated biochemical system 7 . The
Ž .coexistence between three trirhythmicity or

more distinct periodic regimes is also known the-
w xoretically 12]14 but, as with multiple steady

states, the phenomenon becomes more rare as
the number of coexisting rhythms increases.

The conditions for the occurrence of birhyth-

micity were clarified thanks to the analysis of a
two-variable biochemical model which permitted
to verify a conjecture for the origin of the pheno-

w xmenon, based on phase plane analysis 15 . The
same model allowed the characterization of the
closely related phenomenon of multi-threshold
excitability: whereas oscillatory systems generally
display the property of excitability, by which they
are capable of amplifying in a pulsatory manner a
perturbation exceeding a threshold, two distinct
thresholds are observed in the model admitting

w xbirhythmicity 16 .
Systems which display temporal organization in

the form of sustained oscillations of the limit
cycle type are also capable to self-organize in
space and to display stable spatial patterns of the
Turing type, or spatiotemporal structures in the

w xform of propagating concentration waves 1 . The
phenomenon has been studied in detail in chemi-
cal oscillatory systems, such as the Belousov]

w xZhabotinsky reaction 17 , and is illustrated ex-
perimentally in biochemical systems by oscilla-

2q w xtions and waves of intracellular Ca 18]20 and
cyclic AMP waves in aggregating Dictyostelium

w xamoebae 21 .
Much less is known about the coexistence of

multiple stable patterns of spatial or spatiotem-
poral organization than about bistability,
birhythmicity or hard excitation. Indeed, the study
of the occurrence of multiple stable solutions in
chemical or biological systems has mainly been
restricted to homogeneous conditions. The pur-
pose of the present paper is to provide an exam-
ple of a multiplicity of spatiotemporal patterns, by
using the two-variable model previously analyzed
for birhythmicity. When incorporating the effect
of diffusion into this biochemical model we show,
by means of numerical simulations, the coexis-
tence between two different types of propagating
wave-fronts. The selection of either one of these
wave-fronts depends on the amplitude of the ini-
tial perturbation of the homogeneous, excitable
steady state.

2. Model and kinetic equations

The two-variable model considered for
w xbirhythmicity 15 and multi-threshold excitability
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Fig. 1. Biochemical model of a product-activated enzyme re-
action with non-linear recycling of product into substrate. This
two-variable model, capable of birhythmicity and multi-

Ž w xthreshold excitability see Moran and Goldbeter 15,16 and´
w x.also Goldbeter 8 , is used here to demonstrate the possibility

of a coexistence between two distinct wave-fronts, depending
on the magnitude of the initial perturbation.

w x16 is schematized in Fig. 1. It represents an
enzymatic reaction in which the substrate, S, in-
jected at a constant rate, is transformed into a
product, P, which activates the allosteric enzyme,
E, that catalyzes the transformation of S into P.
Moreover, the product is recycled into substrate
by a second reaction catalyzed by an enzyme
whose cooperative kinetics is described by a Hill
equation, characterized by a degree of cooperativ-
ity n. In the absence of recycling, the product-
activated enzyme model accounts for sustained

w xglycolytic oscillations in yeast and muscle 8,22 .
In the presence of recycling, the system acquires

w xthe properties of birhythmicity 15 and multi-
w x Ž w x.threshold excitability 16 see also Goldbeter 8 .

The kinetic equations of the model thus take
w xthe form 8,15,16 :

s g nda is¨ q y sfn nd t K qg

qs g ndg i Ž .sqsfyk gy 1n nsd t K qg

In the above equations, a and g denote the
concentrations of substrate and product normal-
ized, respectively, by division by the Michaelis

Ž .constant of the product-activated enzyme Km
and by the dissociation constant of the product

Ž .for the regulatory site of this enzyme K ; ¨ andP
s denote, respectively, the normalized substrate
input and the maximum rate of the product-
activated enzyme reaction; qsK rK ; k is them P s

apparent first-order rate constant for removal of
product; parameter s denotes the normalizedi
maximum rate of recycling of product into subs-
trate; constant K is equal to the product concen-
tration for which the recycling rate reaches its
half-maximum value. The rate function f of the
product-activated allosteric enzyme, in the case of
a dimeric enzyme that binds the substrate only in
the active state, takes the simple form:

2Ž .Ž .a 1qa 1qg Ž .fs 22 2Ž . Ž .Lq 1qa 1qg

where L denotes the allosteric constant of the
Ž w x w xenzyme see Goldbeter 8 and 15 for further

details on the equations and on the definition of
.parameters .

When diffusion of substrate and product is
Ž .taken into account, Eq. 2 takes the form:

s g n 2a  ais¨ q y sfqDn n a 2 t K qg  r

qs g n 2g  gi Ž .sqsfyk gy qD 3n ns g 2 t K qg  r

where D and D denote the diffusion coeffi-a g

cients of substrate and product, respectively. In
the following numerical simulations, given that it
is the product that triggers the excitable response,
we will consider, for simplicity, the case where

Ž .only the product is diffusing D s0 . We havea

checked that the results do not change signifi-
cantly when D is less than D by one order ofa g

magnitude.

3. Coexistence of two propagating wave-fronts

To demonstrate the coexistence of two propa-
gating wave-fronts, we first consider the behavior

Ž .of the homogeneous system described by Eq. 1 ,
to specify the reference state that shall be taken
as initial condition in the simulations of the spa-
tiotemporal evolution based on integration of Eq.
Ž .3 .

The reference state to be considered is one in
which the system displays the property of multi-

w x Žthreshold excitability 16 . In such a state see Fig.
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.2a , the system is capable of amplifying in a
pulsatory manner perturbations that exceed two

Fig. 2. Dynamic behavior of the model of Fig. 1 under spa-
tially homogeneous conditions. The model illustrates the ef-
fect of two instantaneous increases in the product concentra-
tion, exceeding the first and second threshold for excitability.
Ž . Ž . Ž .a Time evolution obtained by integration of Eq. 1 ; b
phase plane portrait, showing the nullclines for the substrate
Ž . Ž .dotted line and product dashed line , and the trajectories

Ž .corresponding to the time evolution shown in a in response
to the two stimuli of increasing magnitude. The arrows marked
Ž . Ž . Ž . Ž .1 and 2 in a and b indicate the perturbations in the form
of instantaneous increases in product concentration away from

Ž .the steady state as99.645, gs0.8 , up to the values gs1.4
Ž . Ž . Žfor 1 and gs15 for 2 the latter initial value has been

chosen for the sake of clarity, to distinguish between the two
trajectories, even though a smaller initial value of g , above
the second threshold close to 1.6, would also produce a

. Ž .large-amplitude excursion in the phase plane . In b the
steady state is represented by a dot at the intersection of the
two nullclines; the arrows along the trajectories indicate the
direction of movement in the phase plane following the per-
turbations in g . Parameter values are: ¨ s 0.04 sy1 , ss6.2
sy1 , ns4, qs60, k s3 sy1 , Ls5=106, s s2 sy1 , Ks13.s i

distinct thresholds, giving rise to a small and a
large peak of synthesis of the reaction product,
respectively, before the system returns to the
stable steady state located at the intersection of

Ž .the two nullclines black dot in Fig. 2b . The
phase plane trajectories associated with these ex-
citable responses are shown in Fig. 2b, together
with the nullclines dard ts0 and dgrd ts0 ob-

Ž .tained by setting the right-hand side of Eq. 1
equal to zero.

w xAs explained in Moran and Goldbeter 16 , the´
property of multi-threshold excitability is associ-
ated with the existence of a second region of

Ž .negative slope dardg on the product nullcline
dgrd ts0. The phenomenon was previously ana-
lyzed in conditions where the second region of
negative slope rises above the horizontal through

w xthe steady state 16 . The existence of two distinct
thresholds can readily be demonstrated in such
conditions. Here, although the second region of
negative slope is located slightly below this hori-
zontal line, two thresholds for excitability can
nevertheless be observed, as shown in Fig. 2b.
The first threshold, in the case considered, is
close to gs1.3, while the second threshold is
close to gs1.6. Because the first threshold is so

Ž .close to the steady state which lies in gs0.8 on
the scale of Fig. 2b, the initial displacement up to

Ž . Žgs1.4 for trajectory 1 is not clearly visible see
.also Fig. 2a .

In the case of Fig. 2b, the substrate nullcline
also possesses a local maximum and the trajectory
Ž .2 crosses the nullcline three times on its return
to the left limb of the nullcline after generating
the peak in g . We have verified that the sign of
Ž .dard t changes as expected from these multiple
crossings of the nullcline; these variations, how-
ever, are so minute that they do not lead to any
visible changes in the trajectory which seems to

Ž .retain the same sign for dard t all along in that
region.

Turning to the spatiotemporal evolution de-
Ž .scribed by Eq. 3 in the presence of diffusion, we

consider that the system is initially in a stable
steady state corresponding to the situation de-
scribed in Fig. 2. Then, the steady state is stable
but displays the property of multi-threshold ex-
citability. When a suprathreshold, inhomoge-
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neous perturbation is applied to the system ini-
tially in such a state, a single wave-front is seen to
propagate from the site of stimulation. Two dis-
tinct types of wave-front, however, can be seen to
propagate, depending on the amplitude of the
perturbation, which consists in an instantaneous
increase in the product concentration.

Values of the perturbation larger than the
smaller threshold and less than the higher thresh-
old in Fig. 2b trigger the propagation of a small-
amplitude wave-front. The propagation pheno-
menon corresponding to such intermediate per-
turbations is represented in Figs. 3 and 4a along a
single spatial dimension. In Fig. 3a, the time
evolution of the product concentration in differ-
ent points of the spatially extended system is
shown, whereas in Fig. 4a the spatiotemporal
evolution is represented for the entire one-di-
mensional system, in conditions where the
suprathreshold perturbation of intermediate mag-
nitude is applied to the left extremity of the
system in a transient manner. The corresponding
simulations over two spatial dimensions are shown
in Fig. 5a]c in conditions where a similar pertur-
bation is applied in the center of the system.

The corresponding effects of a larger perturba-
tion exceeding the second threshold for excitabil-

Ž .ity are shown in one Figs. 3 and 4b and two
Ž .dimensions Fig. 6a]c , respectively. Here, we see

that such a perturbation elicits the propagation of
a wave-front of large amplitude. It is important to
stress that the small-amplitude and large-ampli-
tude wave-fronts are obtained under the same
conditions, i.e. for the same set of parameter
values. The only difference pertains to the initial
conditions, i.e. the value of the initial increase in
the product concentration in the point of stimula-
tion.

The two coexisting wave-fronts differ not only
by the amplitude but also by the speed at which
they propagate. Thus, as can be seen from the
comparison of Fig. 3a,b, the high-amplitude
wave-front propagates at a rate of approx. 0.15
cmrmin, which is larger by some 7% than the
rate of 0.14 cmrmin at which the small-amplitude
wave-front moves. Such values for the propaga-
tion rate are larger by a factor close to 2 than the
wave propagation rate computed for other

parameter values in this model in the absence of
w xproduct recycling 23 . The propagation rate of

the small-amplitude and the high-amplitude
wave-fronts in two dimensions computed from
Figs. 5 and 6 for a fivefold larger value of the
product diffusion coefficient is, respectively, 0.16
and 0.18 cmrmin. Again we observe that the rate
of propagation of the high-amplitude front is
larger by approx. 10% than the rate at which the
small-amplitude front progresses in space.

What happens when two wave-fronts collide is
shown by the simulations carried along a single

Ž .spatial dimension in Fig. 7. In part a two wave-
fronts of similar, small amplitude started at the
two extremities of the system annihilate each
other when they collide, after producing a single
large-amplitude pulse due to the accumulation of
product in the point of collision. A similar result
is obtained when two wave-fronts of large ampli-

w Ž .xtude meet in similar conditions part b . Mutual
annihilation is also observed when a small-ampli-
tude wave-front started at one extremity collides
with a large-amplitude front initiated at the other

w Ž .xextremity of the system part c .

4. Discussion

We have shown that two wave-fronts of distinct
amplitudes and velocities may propagate along
one or two spatial dimensions, depending on the
magnitude of the initial perturbation of the ho-
mogeneous steady state. The results were ob-
tained in a two-variable biochemical model previ-
ously studied for birhythmicity and multi-
threshold excitability, when taking into account
the effect of diffusion in describing the time
evolution of the system. The coexistence between
two types of wave-fronts under given conditions,
i.e for the same set of parameter values, illus-
trates a new type of coexistence of multiple modes
of dynamic behavior in non-linear systems. Such a
coexistence between two different wave-fronts is
a direct consequence of the occurrence of
birhythmicity and the related phenomenon of
multi-threshold excitability in that system under
spatially homogeneous conditions.

So far the coexistence of distinct modes of
dynamic behavior has primarily been investigated
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in spatially homogeneous conditions; numerous
examples of such phenomena have been reported,
both theoretically and experimentally. In such

Žconditions, the coexistence pertains to two or
.more distinct stable steady states, one steady

Ž .state and one periodic regime, or two or more

Fig. 3. Coexistence of two wave-fronts propagating along a single spatial dimension. Shown is the propagation of a small-amplitude
Ž . Ž .a and a large-amplitude b wave-front. Space is represented by a mesh of 100 points. The curves show the time evolution of the
normalized product concentration at points 1, 10, 20, 30, 40 and 50, successively. The curves are obtained by numerical integration

Ž . y5 2of Eq. 3 for the parameter values of Fig. 2; moreover, D s4=10 cm rmin, D s0. Initial conditions correspond to theg a

Ž . Ž .homogeneous steady state as99.645 and gs0.8, except at point 1 of the spatial mesh where gs1.5 for a and 15 for b , initially.
Boundary conditions are of the zero-flux type. The spatial dimension of the system is 1 cm.
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Fig. 4. Coexistence of two wave-fronts propagating along a single spatial dimension. Shown as a function of time and space is the
Ž . Ž .propagation of a small-amplitude a and a large-amplitude b wave-front, in the conditions of Fig. 2. Simulations are performed

using a spatial mesh of 30 points.

stable periodic regimes. The present study ex-
tends the study of coexisting modes of dynamic
behavior to spatially inhomogeneous conditions.
The coexistence of multiple stable spatial struc-
tures has previously been reported for a theoreti-

w xcal model for pattern formation 24 . As shown by
a theoretical study of a reaction-diffusion model

w xadmitting two stable steady states 25 , coexisting
propagating waves might also originate from the
coupling of diffusion with bistability instead of
birhythmicity, as considered here.

The propagation phenomenon demonstrated in

Figs. 3]7 is only transient, because the perturba-
tion that triggers it is only applied at time zero.
As in a model for oscillations and waves of intra-

2q w xcellular Ca 20 , the wavelike phenomenon
should become sustained when the perturbation
is maintained at the appropriate level in the
course of time.

From an experimental point of view, it would
be interesting to test for the multiplicity of propa-
gating wave-fronts in chemical systems. The best
candidates for such a study would be the chemical
oscillatory systems for which birhythmicity has
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Fig. 5. Propagation of a small-amplitude wave-front in two spatial dimensions. The spatial distribution of the normalized product
Ž .concentration, shown at three successive moments in time, is obtained by numerical integration of Eq. 3 for the parameter values

of Fig. 3, with D s2=10y4 cm2rmin. Initial conditions correspond to the homogeneous steady state, except at the center pointg

Ž .50, 50 of the mesh of 100=100 points where gs1.5 initially. Boundary conditions are of the zero-flux type. The spatial
dimensions of the system are 1 cm=1 cm.
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Fig. 6. Propagation of a large-amplitude wave-front in two spatial dimensions, in the same conditions as in Fig. 5. The spatial
distribution of the normalized product concentration, shown at three successive moments in time, is obtained by numerical

Ž .integration of Eq. 3 for the parameter values and boundary conditions of Fig. 5. Initial conditions correspond to the homogeneous
Ž .steady state, except at the center point 50, 50 of the mesh of 100=100 points where gs15, initially. The propagating front shown

here coexists with the one shown in Fig. 5.
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Ž . Ž .Fig. 7. Annihilation of two propagating wave-fronts upon collision. Two wave-fronts of small a or large b amplitude, started at
Ž .the two extremities of the one-dimensional system, vanish upon collision. A similar phenomenon is observed c when a

small-amplitude wave-front collides with a large-amplitude one. The conditions are those of Fig. 4.
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w xbeen demonstrated 9]11 . The present results
suggest that to observe a multiplicity of propagat-
ing wave-fronts, the most favorable conditions
would correspond to those in which the steady
state is stable but excitable beyond two distinct
thresholds. Such multi-threshold excitability itself
has not yet been demonstrated in chemical oscil-
latory systems displaying birhythmicity but, as
suggested by phase plane analysis of the present

w xmodel 15,16 , the phenomenon should occur un-
der closely related conditions.

Multi-threshold excitability is a property of tha-
w xlamic neurons 26,27 . Other dynamic properties

of these neurons are accounted for, in a qualita-
tive manner, by the biochemical model con-

w xsidered here 28,29 . It is for thalamic neurons
that the phenomena of birhythmicity and multiple
wave-front propagation stand the best chances of
being demonstrated experimentally. The coexis-
tence of multiple periodic attractors has recently
been reported in a theoretical study of a model

w xneuron 14 . Interestingly, the propagation of two
distinct action potentials has been observed ex-

w xperimentally in a neuronal preparation 30 ; this
observation may be taken as indicative of the type
of multiplicity of spatiotemporal patterns re-
ported in the present study. Multiple periodic
states have also been reported in other neuronal

w xpreparations 31,32 . Thus it appears that neu-
robiology, together with chemistry, provides the
best opportunities for demonstrating experimen-
tally, in a given set of conditions, the coexistence
of both multiple, simultaneously stable oscillatory
regimes and multiple propagating waves.
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