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Abstract. We analyze the behavior of a two-variable 
biochemical model in conditions where it admits mul- 
tiple oscillatory domains in parameter space. The 
model represents an autocatalytic enzyme reaction 
with input of substrate both from a constant source 
and from non-linear recycling of product into sub- 
strate. This system was previously studied for birhyth- 
micity, i.e. the coexistence between two stable periodic 
regimes (Moran and Goldbeter 1984), and for multi- 
threshold excitability (Moran and Goldbeter 1985). 
When two distinct oscillatory domains obtain as a 
function of the substrate injection rate, the system is 
capable of exhibiting two markedly different modes of 
oscillations for slightly different values of this control 
parameter. Phase plane analysis shows how the multi- 
plicity of oscillatory domains depends on the parame- 
ters that govern the underlying biochemical mecha- 
nism of product recycling. We analyze the response of 
the model to various kinds of transient perturbations 
and to periodic changes in the substrate input that 
bring the system through the two ranges of oscillatory 
behavior. The results provide a qualitative explana- 
tion for experimental observations (Jahnsen and 
Llinas 1984b) related to the occurrence of two differ- 
ent modes of oscillations in thalamic neurones. 
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1. Introduction 

A conspicuous property of sustained oscillations in 
chemical and biological systems is that they only arise 
in well-defined conditions, corresponding to a particu- 
lar domain in parameter space (Nicolis and Prigogine 
1977; Winfree 1980). In experimental systems and in 
models as well, sustained oscillations generally occur 
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beyond a critical value of some control parameter or in 
a range bounded by two such critical values. The ques- 
tion arises as to what are the consequences of a multi- 
plicity of oscillatory domains on the dynamics of sys- 
tems capable of periodic behavior. Such multiplicity 
obtains whenever oscillations occur in two, or more, 
distinct ranges of values of a control parameter. As 
shown below, this situation may account for un- 
expected, or even paradoxical, modes of dynamic be- 
havior. 

Two-variable systems are particularly suited for 
analyzing the dynamic phenomena associated with 
multiple domains of periodic behavior, since these sys- 
tems are amenable to phase plane analysis (Minorsky 
1967). Here, we analyze a two-variable biochemical 
model presenting such multiplicity. The model is 
closely related to those previously proposed for the 
best-known examples of metabolic oscillations (see 
Goldbeter 1980; Goldbeter et al. 1984, for review), 
namely, glycolytic oscillations in yeast and muscle 
(Hess and Boiteux 1968; Frenkel 1968), and the peri- 
odic synthesis of cyclic AMP in the slime mold Dic- 
tyostelium discoideum (Gerisch and Wick 1975). 

By means of phase plane analysis, we show how 
multiple oscillatory domains originate from the under- 
lying biochemical mechanism, and determine how this 
multiplicity influences the response of the system to 
transient or periodic changes in parameter values. De- 
spite the biochemical nature of the mechanism consid- 
ered, the results have immediate relevance to neuro- 
physiology. The dynamic properties of the model 
indeed provide a qualitative explanation for recent 
findings on the existence of two distinct modes of oscil- 
latory behavior in thalamic neurones. 

2. Model and phase plane analysis 

The model considered is that of an allosteric enzyme 
activated by its reaction product (Fig. 1). Such a model 
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Fig. 1. Model of a product-activated enzyme reaction with 
recycling of product into substrate. This model, previously ana- 
lyzed for birhythmicity and multi-threshold excitability (Moran 
and Goldbeter 1984, 1985), admits one or two oscillatory do- 
mains as a function of the substrate input v 

do~ 
dt 

d7 
dt 

with 

(~, 7) = 

has been analyzed extensively (Goldbeter and Nicolis 
1976) in relation with glycolytic oscillations that occur 
in yeast and muscle, with a period of several minutes, 
as a result of the activation of phosphofructokinase by 
a reaction product (Frenkel 1968; Hess and Boiteux 
1971; Goldbeter and Caplan 1976). Oscillations occur 
in the model when the constant substrate injection rate 
is in a range bounded by two critical values of the 
substrate input. This result agrees with the observa- 
tion that glycolytic oscillations occur in yeast extracts 
when the substrate input lies between 20 and 
160 raM/h; outside this range, the system evolves to- 
ward a stable steady state (Hess and Boiteux 1968). 

Multiple oscillatory domains can arise in the mod- 
el of Fig. 1 when product recycling into the substrate 
is taken into account (although such recycling also 
occurs in glycolysis where ADP is transformed into 
ATP, there is as yet no evidence for multiple ranges of 
substrate input producing glycolytic oscillations in 
yeast or muscle). Previous analyses of the model of 
Fig. 1 (Moran and Goldbeter 1984, 1985) have shown 
that product recycling may give rise, for a given set of 
parameter values, to birhythmicity (i.e., the coexist- 
ence of two simultaneously stable periodic regimes) 
and excitability with multiple thresholds (the latter 
property refers to the capability of the system to am- 
plify in a pulsatory manner perturbations beyond two 
distinct thresholds for excitation). Both phenomena 
are closely associated with the existence of multiple 
oscillatory domains in parameter space. 

The model comprises two variables, namely, the 
substrate and product concentrations, whose time 
evolution is governed by the kinetic equations (Moran 
and Goldbeter 1984): 

ai 7 n 
- v + aM ~ (~, 7) 

K" + 7" 

q ffi 7n 
- q a M ¢ (e, ~) - k~7 (1) 

K" + 7" 

(1 + ~) (1 + 7) 2 

L + (1 + ~)2 (1 + 7) 2 .  

In the above equations, e and 7 denote the normalized 
concentrations of substrate and product; v and a M 
denote the normalized input of substrate and maxi- 
mum rate of the product-activated enzyme reaction; q 
is the ratio of the Michaelian constant of this enzyme, 
divided by the dissociation constant of the product; 
L is the allosteric constant of the product-activated 
enzyme; a i and K refer to the normalized maximum 
rate of product recycling and to the product concen- 
tration yielding the half-maximum rate of this process; 
ks is the apparent first -order rate constant for removal 
of the product. Equations (1) are obtained by means of 
a quasi-steady-state hypothesis for all enzymatic 
forms, when assuming that the product-activated en- 
zyme obeys the concerted model for allosteric enzymes 
(Monod et al. 1965), whereas the recycling process is 
governed by the Hill equation with a cooperativity 
coefficient n. 

In the phase plane, the characteristics of the null- 
clines of system (1) determine the modes of dynamic 
behavior. The substrate and product nullclines obey 
Eqs. (2 a) and (2 b), respectively: 

a i 7 n 
v = aM ~ (c¢ 7) (2 a) 

K" + 7" 

_a(79 - ~ (2b) 
k~ 7 = q aM ~b (~, 7) K" + 7"_1" 

These relations are obtained from Eqs. (I) by setting 
d~/dt and dy/dt equal to zero. Whereas the product 
nullcline possesses but a single region of negative slope 
de/d7 when o-~ = 0 (Fig. 2a), it can possess up to two 
such regions in the presence of product recycling 
(Fig. 2 b). As in the case ai = 0 (Goldbeter 1980), linear 
stability analysis shows that the steady state, which lies 
at the intersection of the two nullclines, is unstable 
whenever the slope de/d7 on the product nullcline is 
sufficiently negative and obeys inequality (3): 

(de/dT)0 < -- (l/q). (3) 

The system governed by Eqs. (1) admits a single steady 
state and remains bounded. Consequently, the insta- 
bility of the steady state is associated with the evolu- 
tion toward a stable limit cycle corresponding to sus- 
tained oscillations of ~ and 7 as a function of time. A 
typical limit cycle is shown in Fig. 2 a for a~ = 0. In the 
presence of product recycling, limit cycles have a more 
complex structure that is analyzed in Sect. 4 below. 

3. Origin of  multiple osci l latory domains  

In the absence of recycling, the product nullcline pos- 
sesses only one region of negative slope in which con- 
dition (3) may hold. Thus, a single domain of oscil- 
lations obtains in these conditions, when varying the 
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Fig. 2a  and b. Substrate and product nullclines in the absence 
(a) or presence (b) of product recycling. The nullclines are given 
by Eqs. (2 a, b). In (a) the product nullcline possesses but a single 
region of negative slope dc~/dT, whereas two such regions exist in 
(b). The steady state, located at the intersection of the two null- 
clines, is unstable whenever the slope d~/d? in this state is suffi- 
ciently negative. The solid curve in (a) shows the limit cycle that  
encloses such an unstable steady state in the phase plane (e, 7). 
The product  nullcline is the locus of the steady state as a function 
of v (see text) 

ratio (qv/k~). This ratio will be taken here as bifur- 
cation parameter since at steady state it is equal to the 
product  concentration ?o- An increase in the substrate 
input v, which is the control parameter used in the 
experiments on glycolytic oscillations (Hess and Boi- 
teux 1968), has the effect of shifting the substrate null- 
cline to the right without affecting the nullcline for 7. 
For  a given ratio (q/k~), the product  nullcline therefore 
represents the locus of steady states when varying the 
substrate input, since the steady state is the inter- 
section of this curve with the substrate nullcline that 
moves to the right upon increasing v. 

Figures 3 and 4 indicate how product  recycling 
leads to the emergence of two domains of instability 
separated by a range of parameter values for which the 
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Fig. 3. Deformation of the product nullcline as a function of the 
maximum rate of product recycling. The curves show the prod- 
uct nullcline (Eq. 2b) for different values of the normalized, 
maximum recycling rate cr i .Values of ~ (in s -  1 ) are indicated on 
each curve. Other  parameter values are: q = 20, crg = 5.8 s-1, 
n = 4, K = 12, L =  5.106 , k s=  1 s -1 
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Fig. 4. Deformation of the product  nullcline as a function of the 
threshold constant for product recycling. The curves are estab- 
lished according to Eq. (2b) for the parameter values of Fig. 3, 
with a i = 2.2 s -  1. The value of parameter  K is indicated on each 
curve 

steady state is stable. Two parameters govern the 
recycling process, namely, the maximum rate of recycl- 
ing, o], and the threshold constant K which yields a 
measure of the concentration 7 at which recycling into 
c~ becomes significant. 

In Fig. 3, the effect of increasing a~ at the fixed 
value K = 12 appears to induce a "bump" in the prod- 
uct nullcline around the value 7 = K. The form of the 
nullcline can be comprehended in terms of the steady 
state dependence of e and 7 on v. In the absence of 
recycling, the value of c~ at steady state first increases 
with v, then begins to decrease as autocatalysis be- 
comes significant when the product  concentration, 
equal to (qv/ks) at steady state, reaches a level close to 
unity. The reason for the decrease in the steady state 
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value of e upon increasing v is the enhanced rate of 
substrate consumption once autocatalysis becomes ef- 
fective. The substrate concentration eventually rises 
again at larger values of v. This occurs because the 
enzyme is then fully activated by the high concentra- 
tion of product: the enzyme reaction rate cannot in. 
crease further, so that substrate consumption is super- 
seded by the substrate input. 

Product recycling has the effect of counter- 
balancing the decrease in ~ brought about by autoca- 
talysis. Indeed, provided the threshold constant K is in 
an appropriate range (see Fig. 4), any increase in 7 
beyond K will tend to increase the substrate level 
through the recycling reaction. This effect becomes 
more pronounced as the maximum rate of recycling 
increases. Hence, the "bump" produced around 7 = K 
becomes more pronounced as a~ increases. 

When the value of K is such that it corresponds to 
a value of 7 located in the region of negative slope, the 
bump will create around 7 = K a region of stability as 
soon as condition (3) ceases to hold. At first, the origi- 
nal domain of instability still exists at larger values of 
7, since the slope d c~/d 7 there remains sufficiently nega- 
tive. However, when o-~ becomes larger than 3 s-~ in 
the case of Fig. 3, the second region of instability 
disappears altogether and only one domain subsists in 
which an unstable steady state is surrounded by a 
stable limit cycle. 

The importance of the threshold constant for 
recycling is illustrated in Fig. 4 at a fixed value of ag. 
When the value of K is much larger than unity (e.g. 
K = 1,000), the product nullcline is nearly identical to 
that obtained with o-~ = 0. Indeed, as ~ ~ K in the 
range of product concentrations considered in Fig. 4, 
such a large value of K reduces the apparent rate of 
recycling to a negligible value. 

A progressive decrease in K down to the value of 
20 is seen to lead to an increase in the value of the slope 
de/dT; this increase in slope occurs at lower and lower 
values of 7, so that the original instability domain 
shrinks upon decreasing K. Around K = 15, however, 
the effect of product recycling has moved sufficiently to 
the left, so that a region of negative slope reappears at 
larger values of 7: two domains of instability coexist. 
Further decrease in K leads to a progressive widening 
of the second instability domain and to a disappear- 
ance of the first, until the system once again admits a 
single oscillatory domain. 

Figures 3 and 4 thus indicate that two domains of 
instability coexist as a function of the bifurcation pa- 
rameter (qv/k~) only in a finite range of values of the 
recycling parameters o-~ and K. 

A third parameter related to product recycling is 
also determinant for the occurrence of multiple oscil- 
latory domains. This is parameter n which measures 
the cooperative character of the recycling process. In- 

deed, for two regions of negative slope to occur, the 
product nullcline has to correspond to a polynomial 
equation which is at least of the fifth degree in ~. This 
cannot occur for n = I since the product nullcline, 
which obeys Eq. (2 b), is then of the third degree in ~. 
The nullcline equation has a degree equal to or greater 
than 5 only for n _> 2. Numerical simulations indicate 
so far that multiple oscillatory domains, birhythmic- 
ity, and multi-threshold excitability occur in the model 
for n _  3. 

4. Changing the time scale structure of the system 
changes the number of oscillatory domains 

The existence of two separated domains of instability 
does not necessarily correspond to two distinct do- 
mains of oscillations. As shown by the series of bifur- 
cation diagrams of Fig. 5, the existence of two sepa- 
rated domains of oscillations also depends on the time 
scale structure of the oscillatory system. 

The diagrams of Fig. 5 were established for a mod- 
erate value of ~ for which two regions of instability of 
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Fig. 5. Bifurcation diagram for three values of parameter q 
which governs the time scale structure of the system. In each 
graph, the steady state concentration of substrate, % (lower 
curve), and the maximum substrate concentration in the course 
of oscillations, aM (upper curves), are plotted as a function of v for 
fixed values of the ratio q/k s . The abscissa yields the steady state 
concentrat ion of product equal to qv/k~. Solid and dotted lines 
refer, respectively, to stable and unstable (steady or periodic) 
regimes. The curves are established by combination of linear 
stability analysis and numerical  integration of Eqs. (1). Parame- 
ter values are: a~ = 1.1 s -1, o- M = 5 s -1, n = 4, K = 10, 
L=5"106 , k s =  0 .06qs  -1. 
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Fig. 6a  and b. Limit cycle oscillations as a function of v for q = 1. The trajectories in the phase plane (a) and the time evolu- 
tion (b) are shown for v = 0.065 s-1 (1), 0.275 s-1 (2), 0.75 s-1 (3) and 1.2 s - i  (4). The product nullcline is shown in the phase plane, 
together with the substrate nullclines corresponding to the four values of v. Two stable limit cycles coexist for v = 0.275 s -  1 ; these 
are separated by an unstable cycle (not shown). The trajectories are obtained by numerical integration of Eqs. (1), whereas the nullclines 
are generated according to Eqs. (2). Parameter  values are those of Fig. 5 a 
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the steady state are separated by a region of stability. 
Of importance here is the fact that the bump induced 
in the product nullcline by recycling, around the value 

= K, remains lower than the local maximum in this 
nullcline around 7 = 1. Here we increase parameters 
q and ks by a similar factor, in order not to affect the 
shape of the product nulMine nor the value of ~o which 
remains constant at a fixed value of v. 

As shown by Eqs. (1), the rise in q and ks enhances 
the rate of product evolution whereas the evolution 
rate of the substrate remains unchanged. The increase 
in the two parameters thus modifies the time scale 
structure of the system by making the product evolve 
faster than the substrate. 

When product and substrate evolve on a similar 
time scale (see Fig. 5 for q = 1), the bifurcation diagram 
indicates two regions of oscillations separated by a 
range of v values corresponding to a stable steady 
state. Two additional phenomena, previously studied 
in more detail (Moran and Goldbeter 1984, 1985), are 
illustrated by this diagram, namely, birhythmicity and 
hard excitation. These refer, respectively, to the coexis- 
tence between two stable periodic regimes or between 
one stable steady state and one periodic regime, at a 
given value of the bifurcation parameter (qv/ks). Upon 
increasing q and ks, these two phenomena subsist but, 
due to the faster evolution of variable y, the phase 
plane trajectories "jump over" the bump so that the 
two branches of periodic solutions merge. A continu- 
ous oscillatory domain obtains in these conditions as 
a function of (qv/ks). 

How the shape of the oscillations is affected by the 
existence of one or two time scales is further illustrated 
in Figs. 6 and 7, respectively. Here, four different input 
rates of substrate are considered. In Fig. 6, owing to 
the presence of two distinct oscillatory domains, the 
amplitude of the oscillations passes through a maxi- 
mum and then increases again upon increasing v. This 
does not occur in Fig. 7, where there is a single oscil- 
latory domain. In the latter case, the limit cycle ob- 
tained for v = 0.75 s-  1 encloses that obtained for the 
larger value v = 1.2 s-1, whereas the reverse is true 
when the system admits a single time scale (compare 
also the bottom panels of Figs. 6 and 7). Birhythmicity 
obtains in both cases: depending o'n initial conditions, 
the system then evolves to either one of two stable 
periodic regimes. 

The differential effect of one versus two time scales 
on the structure of the oscillatory domains markedly 
depends on the shape of the product nullcline. When 
the bump created by recycling surpasses the first maxi- 
mum on this nullcline at larger values of a i, two well 
separated domains of oscillations are observed regard- 
less of the time scale structure of the system. These 
oscillations are strikingly different, as shown in Fig. 8 
where the limit cycles obtained for v = 0.15 s -1 and 

1.5 s-1 are represented. A peculiar feature of these 
two cycles is that they share a portion of their trajecto- 
ries. This common portion, denoted AB, is travelled 
from A to B on the small cycle, but in the reverse 
direction on the larger cycle. 

5. Response to square-pulse or periodic perturbations 

The above phase plane analysis permits one to predict 
the response of the oscillatory system to transient 
changes in the controlling parameters. Of particular 
interest is the response to square-wave pulses in the 
substrate injection v. Such pulses can indeed be com- 
pared to those used in neurophysiological experiments 
(see Discussion below). 

Illustrated in Fig. 9 a is a situation in which four 
different values of v are considered. These correspond 
to four different steady states (heavy dots), numbered 
from I to 4; only steady state 4 is unstable. In Fig. 9 b, 
starting from the first steady state for v = 0.05 s-  1, we 
impose a square pulse during which v is raised to 
0.3 s - l ;  the system switches to steady state 2 after a 
small overshoot in 7, before returning to the original 
steady state. The input v is then raised transiently to 
0.6 s- 1, and the level ofv settles to the new steady state 
in a hyperbolic manner, before decreasing exponen- 
tially when the square pulse terminates. Finally, a step 
increase in v from 0.6 to 1.5 s-1 induces sustained os- 
cillations which cease when v is returned to the former 
value. The successive increases in v applied over an 
increasing background thus produce three different 
types of transient response. These can readily be com- 
prehended by referring to the phase plane dynamics 
depicted in Fig. 9 a. 

For the parameter values of Fig. 9, we now con- 
sider the intermediate value v = 0.55 s-1 correspond- 
ing to a stable, non-oscillatory state (Fig. 10). A square 
pulse decrease in v down to 0.15 s-  1 will produce regu- 
lar, small-amplitude oscillations. An opposite pulse of 
the same magnitude, bringing v up to 0.95 s -1, pro- 
duces another type of oscillations whose period and 
amplitude markedly differ from those obtained with 
the transient decrease in v. 

A specific consequence of the nullcline structure of 
the model is the existence of an overshoot phenome- 
non, already noticeable in Fig. 9 a for the transition 
from v = 0.05 to 0.3 s-1. When the oscillations ob- 
tained for v = 0.8 s- 1 are terminated upon lowering v 
down to 0.3 s - l ,  the subsequent evolution toward a 
stable steady state follows the passage through a simi- 
lar overshoot (Fig. 11). The origin of such behavior is 
the same in both cases. For v = 0.8 s -1, the oscil- 
lations have the largest amplitude and the limit cycle 
goes all the way to the left limb of the product nullcline 
(see curve 3 established for v = 0.75 s -1 in Fig. 7a). 
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t = 1,000 s (arrow). The origin of the overshoot phenomenon 
that  preceeds the evolution toward the stable steady state is due, 
as in Fig. 9, to the fact that  the second maximum on the product 
nullcline is higher than the first. Parameter  values are as in Fig. 8 

When the input rate is switched to 0.3 s-1, the new 
steady state which lies in the first well on the nullcline 
is reached only after the trajectory hits the second 
region of positive slope on this nullcline. After the 
product  concentration has reached this value, which 
corresponds to the maximum of the overshoot, it de- 
creases as the trajectory brings the system to the stable 
steady state. The existence of the overshoot closely 
depends on the initial and final values of the controll- 
ing parameter, namely, the substrate input. Thus, no 

o v e r s h o o t  would be observed if parameter v were de- 
creased from 0.8 to 0.6 s-1 (see Fig. 9 a). 

In Fig. 12 is shown the response of the system to a 
positive, periodic variation in v. When the amplitude 
of the change is such that the maximum value of v 
corresponds to a stable steady state and the inter- 
mediate values produce large-amplitude oscillations, a 
characteristic response is obtained in which a series of 
spikes in ~ occur both during the ascending and the 
descending ramps; these bursts are separated by a 
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Fig. 12. Modulat ion of oscillatory behavior by a positive peri- 
odic variation in v. The substrate input is varied from 0.6 to 
2.6 s -1 (upper trace, not scaled) according to the relation 
v = 0 . 6  +2[sin(2nt/2,000)[. Parameter  values are those of 
Fig. 8 
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Fig. 13. Modulat ion of oscillatory behavior by a negative peri- 
odic variation in v. Parameter  v varies from 0.05 to 0.55 s - i  
according to the relation v = 0.55 - 0.5 Isin (2~t/4,000)1. Pa- 
rameter values are as in Fig. 8 
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Fig. 14. Periodic forcing through multiple oscillatory domains. 
The substrate input (upper trace, not scaled) is varied from 
0.11 to 0.91 s -1 according to the relation v =  0.51 + 0.4sin 
(27~t/2,500). The curves are obtained by numerical integration of 
Eqs. (1) for the parameter  values of Fig. 8 
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Fig, 15. Effect of a periodic variation in v similar to that  in 
Fig. 14, with a period of 300 s instead of 2,500 s. Only the time 
evolution of the reaction product is shown 

phase of quiescence around the maximum in v. The 
number of spikes on both sides increases with the peri- 
od of the variation in v. For lower values of v, the 
second type of oscillation would also be observed. 

A mirror variation in the substrate input give rise 
to a similar effect (Fig. 13), but the quiescent phase 
separates here small-amplitude bursts in 7; these 
bursts are of the same type as those associated with 
oscillations at low values of the substrate input (see, 
e.g., Fig. 8 b). 

Both types of oscillations can be seen to alternate 
periodically when the substrate input is varied in a 
sinusoidal manner such that v passes through the two 
oscillatory domains. Thus, in Fig. 14, v oscillates from 
0.11 to 0.91 s- 1 around the mean value 0.51 s- a, with 
a period of 2,500 s. Over such a period, a series of 
high-frequency bursts in ? occur with a large ampli- 
tude when v is above the mean; these precede a few 
low-amplitude peaks which are produced when v goes 
to its minimum. The effect of a periodic variation in v 
around the same mean value, but with a much shorter 

period (i.e. 300 s), is shown in Fig. 15. Here, each oscil- 
latory domain is sweeped across so rapidly that a sin- 
gle high-amplitude spike in 7 alternates with a single 
low-amplitude peak. 

Whereas large-amplitude variations in substrate 
input produce the periodic patterns of Figs. 12-15, the 
sinusoidal modulation of parameter v, when restricted 
in a much smaller domain of variation, may produce 
quasi-periodic behavior. In the region of birhythmic- 
ity, the two coexisting limit cycles transform into two 
coexisting tori when a small sinusoidal variation is 
added to the substrate input v. We are currently in- 
vestigating the conditions in which periodic forcing 
induces aperiodic oscillations, i. e. chaos, in this model. 
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6. Discussion 

We have analyzed in a simple biochemical model the 
various oscillatory phenomena that arise in the pres- 
ence of multiple oscillatory domains. Such domains 
occur as a function of a given parameter when two (or 
more) distinct oscillatory regimes, separated by a re- 
gion of non-oscillatory behavior, obtain upon contin- 
uous variation of this parameter. The occurrence 
of multiple oscillatory domains in the two-variable 
model considered was readily explained in terms of the 
underlying biochemical mechanism by phase plane 
analysis. 

Of primary importance for such multiplicity is the 
existence of a nullcline with two regions of negative 
slope corresponding to two domains of instability of 
the steady state. The relative positions of these two 
regions of negative slope, together with the time scale 
structure of the system, determine whether a single or 
two domains of oscillations will obtain. 

The main result of the present analysis is to show 
how a given oscillatory system is capable of exhibiting 
two markedly different modes of periodic behavior in 
closely related conditions. The latter phenomenon dif- 
fers from that of birhythmicity in which two modes of 
periodicity coexist in the same conditions. Here, how- 
ever, the two phenomena are linked as birhythmicity 
occurs owing to the splitting of a single oscillatory 
domain into two parts (Moran and Goldbeter 1984). 
As shown by the present model, birhythmicity often 
occurs in a restricted domain of parameter values. The 
switching between two different periodic regimes in 
conditions of birhythmicity (Moran and Goldbeter 
1984) should therefore be less common than that asso- 
ciated with the transition between multiple oscillatory 
domains in parameter space. With respect to physio- 
logical significance, a system oscillating with substan- 
tially different period and amplitude for slight changes 
in parameter values retains much of the versatility as- 
sociated with birhythmic behavior. 

No experimental example as yet exists for multiple 
oscillatory domains in enzymatic reactions. Beyond 
the dynamics of oscillatory biochemical systems the 
present results bear, however, on other biological 
rhythms, in particular those of neural origin. 

Jahnsen and Llinas (1984a, b) have studied the 
neurophysiology of guinea pig thalamic neurones in 
vitro and showed that these cells are capable of exhib- 
iting two different rhythms triggered at distinct mem- 
brane potential levels which differ by a few mV only. 
The first oscillation occurs at a level slightly depolar- 
ized from rest, with a frequency close to 10 Hz. The 
second oscillation occurs at more hyperpolarized lev- 
els, with a frequency close to 6 Hz. The physiological 
importance of such behavior stems from that these two 
frequencies coincide with the y and 0 rhythms of the 

e.e.g, and, in the second case, with the frequency of 
Parkinson's tremor (Llinas 1984). 

The various ionic conductances that underlie the 
two rhythmic processes have been analyzed in detail 
by Jahnsen and Llinas (1984 a, b). These authors relate 
the occurrence of two distinct oscillatory modes to the 
existence of both a low- and a large-threshold firing 
mechanism in thalamic neurones. Similar properties 
were also demonstrated in neurones of the inferior 
olive (Llinas and Yarom 1981, 1986). It is of interest 
that the present model may similarly possess the prop- 
erty of multi-threshold excitability: in the same condi- 
tions, the system then amplifies perturbations above 
two distinct thresholds before returning to the same 
stable steady state (Moran and Goldbeter 1985). 

The present findings can be related to neuronal 
dynamics when taking the steady-state level of vari- 
able 7 as a measure of the resting membrane potential. 
In such correspondence, a change in substrate input v 
leads to a change in the steady state level of product 7, 
and can therefore be associated with a change in ap- 
plied current that shifts the resting potential. A tran- 
sient increase or decrease in v then corresponds to a 
depolarizing or hyperpolarizing current pulse, respec- 
tively. 

That the present model may prove useful for com- 
prehending the oscillatory properties of thalamic neu- 
tones is further suggested by the striking resemblance 
of the results shown in Fig. 9 b with those presented in 
Fig. 2 of the paper by Jahnsen and Llinas (1984a). 
There, a depolarizing pulse of fixed magnitude was 
given to thalamic cells, at three increasing values of the 
resting potential. For the most hyperpolarized state, 
the current pulse triggers an excitable response where- 
as for the medium value the same pulse only produces 
a subthreshold depolarization. For the most depolar- 
ized state the current pulse generates a train of action 
potentials. 

Further similarities between the present results 
and the experiments on thalamic neurones relate to 
the effect of double-ramp current injection. The above 
simulations (see, e.g., Fig. 12) show that the dynamics 
of the biochemical system differs during the rising and 
decreasing phases of the input variation. The number 
of peaks in both phases is different, although the sys- 
tem traverses the same range of input values. Such 
"hysteresis" is also observed in the experiments (see 
Fig. 11 of Jahnsen and Llinas 1984b). 

Finally, the analysis of the model indicates the con- 
ditions in which a phenomenon of rebound excitation 
resembling that observed in thalamic cells (Jahnsen 
and Llinas 1984a, b) is associated with the existence of 
two oscillatory domains. The occurrence of this phe- 
nomenon following a change in the substrate input 
depends on the final value of this parameter. 
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Biochemical oscillations result from the regulation 
of enzyme activity by non-linear feedback processes. 
Such regulations are often of an autocatalytic nature, 
as in the present model. Neuronal  oscillations likewise 
originate from non-linear ionic transport  processes 
which are frequently autocatalytic, through their volt- 
age dependence. 

Although there is no direct relation between the 
biochemical variables of this model and those govern- 
ing the excitability of nerve cells, the above discussion 
shows that the present results account qualitatively for 
many oscillatory properties of thalamic neurones. This 
further supports our suggestion based on multi- 
threshold excitability (Moran and Goldbeter  1985) 
that a phase portrait  similar to that furnished by the 
present model may underlie the dynamic behavior of 
thalamie cells. 

The occurrence of multiple modes of thalamic os- 
cillations can indeed be linked in the phase plane to the 
existence of a nullcline with two regions of negative 
slope. The fact that the variables here are biochemical 
instead of current and voltage in the neuronal system 
should not prevent relating the present results to tha- 
lamic behavior. F rom a dynamic point of view, the key 
issue is that similar dynamic phenomena are associat- 
ed with similar phase portraits. 

The above view is corroborated by a recent study 
of Rose and Hindmarsh (1985) who proposed a model 
for thalamic cells, on the basis of a nullcline structure 
similar to that of the present model. These authors 
indeed consider a two-variable model in which the 
nullcline for the membrane potential possesses two 
regions of negative slope; to this end, the equation for 
this nullcline is taken as a combination of two cubic 
polynomials. Rose and Hindmarsh show that such 
nullcline shape gives rise to two instability domains 
and use it to account for the multiple modes of oscil- 
lations observed in thalamic neurones, as well as for a 
variety of experimental results on the effect of current 
pulses. 

Beyond the very nature of the variables considered, 
the main difference between this model and that of 
Rose and Hindmarsh is that the present one provides 
an explicit molecular mechanism giving rise to a null- 
cline with two regions of instability. The continuous 
deformation of the nullcline due to changes in the rate 
or in the threshold for product  recycling leads to pat- 
terns of dynamic behavior which range from a unique 
periodic regime to birhythmicity and multiple modes 
of oscillations. In the model for thalamic neurones 
(Rose and Hindmarsh 1985), similar nullcline defor- 
mations assigned to changes in ionic currents produce, 
in a similar manner, increasingly complex patterns of 
rhythmic activity. 

The adequacy of the present model for the qualita- 
tive description of some of the excitable and oscil- 

latory properties of thalamic cells raises the possibility 
that birhythmicity may also occur in these neurones - 
as well as in the Rose-Hindmarsh model - in an appro- 
priate range of the membrane potential. Our  previous 
analysis shows, however, that birhythmicity obtains 
only in a limited range of values of the substrate input 
and of other parameters such as the maximum rate 
and the threshold constant for recycling (Moran and 
Goldbeter 1984). The model also suggests (see Figs. 14 
and 15) that a sinusoidal variation of the applied cur- 
rent with the appropriate amplitude and frequency 
should produce a pattern of temporal response char- 
acterized by alternation between the two oscillatory 
modes of thalamic cells. 

The interest of the present model for the study of 
phenomena associated with multiple oscillatory do- 
mains stems from its relative simplicity and from the 
fact that its nullcline structure can be readily modified 
by changes in the parameters that govern a well- 
defined molecular process, i.e. product  recycling. Such 
versatility may be useful in addressing different types 
of experimental situations. With respect to modelling 
dynamic phenomena in neuronal systems, the present 
model may be viewed as providing an alternative to 
models based on Hodgkin-Huxley equations or on 
mathematical descriptions not directly related to un- 
derlying biophysical mechanisms. 
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