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We analyze the transition from simple to complex oscillatory behaviour in a three- 
variable biochemical system that consists of the coupling in series of two autocatalytic 
enzyme reactions. Complex periodic behaviour occurs in the form of bursting in 
which clusters of spikes are separated by phases of relative quiescence. The gener- 
ation of such temporal patterns is investigated by a series of complementary 
approaches. The dynamics of the system is first cast into two different time-scales, 
and one of the variables is taken as a slowly-varying parameter influencing the 
behaviour of the two remaining variables. This analysis shows how complex oscilla- 
tions develop from simple periodic behaviour and accounts for the existence of 
various modes of bursting as well as for the dependence of the number of spikes 
per period on key parameters of the model. We further reduce the number of 
variables by analyzing bursting by means of one-dimensional return maps obtained 
from the time evolution of the three-dimensional system. The analysis of a related 
piecewise linear map allows for a detailed understanding of the complex sequence 
leading from a bursting pattern with p spikes to a pattern with p+  1 spikes per 
period. We show that this transition possesses properties of self-similarity associated 
with the occurrence of more and more complex patterns of bursting. In addition to 
bursting, period-doubling bifurcations leading to chaos are observed, as in the 
differential system, when the piecewise-linear map becomes nonlinear. 

1. Introduction 

Among the rhythmic patterns of temporal  behaviour which are encountered at all 
levels of  biological organization, complex periodic oscillations consisting of bursts 
of several spikes separated by periods of  relative quiescence appear  to be quite 
common.  Bursting has been observed in nerve cells such as R15 in Aplysia (Alving, 
1968; Adams & Benson, 1985) or hippocampal  neurons (Johnston & Brown, 1984), 
and in pancreatic fl-cells (Atwater et al., 1978; Cook, 1984). The phenomenon of 
bursting has also been observed in chemical systems such as the Belousov- 
Zhabotinsky reaction, in conditions close to those that produce aperiodic, i.e. chaotic, 
oscillations (Hudson et al., 1979). 

The origin of  bursting behaviour in molluscan neurons has been studied theoreti- 
cally by Both et at. (1976) and by Plant (Plant & Kim, 1976; Plant, 1978), whereas 
Chay & Keizer (1983, 1985) proposed a model for bursting oscillations of  the 
membrane  potential in pancreatic/3-cells.  Rinzel (1986) further analyzed the latter 
model and compared  it with Plant's model for bursting neurons (Rinzel & Lee, 
1986). A three-variable phenomenological  model for neuronal bursting was also 
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proposed by Hindmarsh & Rose (1984). Rinzel & Troy (1982, 1983) addressed the 
mechanism of bursting in the Belousov-Zhabotinsky reaction by analyzing the model 
proposed by Janz et al. (1980), and explained the phenomenon by means of a 
piecewise linear map, as also envisaged by Tomita & Tsuda (1980). A recurrent 
theme in all these theoretical studies is that bursting originates from the coupling 
of a fast spike-generating mechanism with a slow oscillation (Rinzel & Lee, 1986, 
Koppel & Ermentrout, 1986). 

We have previously observed bursting in a model for a multiply regulated bio- 
chemical system (Decroly & Goldbeter, 1982). The model represents the coupling 
in series of two autocatalytic enzyme reactions. Models of this sort based on a single 
autocatalytic enzyme reaction have been proposed (Goldbeter & Lefever, 1972; 
Goldbeter & Segel, 1977) for glycolytic oscillations in yeast and muscle (Frenkel, 
1968; Hess et aL, 1969) and for the periodic synthesis of cyclic AMP in the slime 
mould Dictyosteliurn discoideum (Gerisch & Wick, 1975). In addition to bursting, 
the coupled enzyme system is also capable of presenting aperiodic oscillations and 
multiple, simultaneously stable, periodic regimes (Decroly & Goldbeter, 1982, 
1984a, b, 1985; Goldbeter & Decroly, 1983). It therefore provides a three-variable 
prototype for the study of a wide variety of complex patterns of temporal organization 
in biochemical and other, chemical or biological, systems. 

Bursting occurs in the two-enzyme model in a large domain of the parameter 
space close to a region of chaotic behaviour (Decroly & Goldbeter, 1982). In the 
domain of bursting, the number of spikes over a period changes in a complex 
manner with the control parameters. The goal of the present paper is to understand 
the generation of complex periodic oscillations and the sequence of bifurcations 
leading from one pattern of bursting to another as well as the transition to chaos. 
We begin our study by describing, in section 2, the various patterns of simple or 
complex bursting observed in the three-dimensional system. 

Our analysis of the generation of bursts in section 3, is closely related to that of 
Rinzel (1986). The dynamical evolution of the three variables is separated into two 
time-scales. We treat the slow variable as a parameter and analyze its influence on 
the dynamics of the "fast" sub-system. The combination of the fast and slow 
dynamics gives rise to bursting. In section 4, we analyze a family of one-dimensional 
return maps obtained by numerical integration of the differential equations which 
govern the three-variable system. How the shape of the map depends on the system's 
parameters can be understood qualitatively owing to the separation of the dynamics 
into two time scales. The analysis of a related, simpler, piecewise linear map in 
section 5 sheds light on the transition from a bursting pattern with p spikes to a 
pattern with p + 1 spikes per period. This transition comprises the passage through 
highly complex modes of bursting, intertwined in a self-similar manner. 

Our analysis permits us to understand the origin of extremely complex modes of 
periodic behaviour that were first uncovered by direct integration of the system's 
kinetic equations. For example, the piecewise linear map explains a pattern of 
complex oscillatory behaviour in which four successive phases of bursting, contain- 
ing eleven, two, three and two spikes, separated by brief phases of quiescence, are 
repeated periodically (see also Figs 2(d) and 4(b) in Decroly & Goldbeter, 1982). 
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We compare our results with the sequences of periodic and aperiodic patterns of 
bursting obtained by Tomita & Tsuda (1980) for the explanation of experimental 
data reported by Hudson et al. (1979) on complex oscillations in the Belousov- 
Zhabotinsky reaction. The present study corroborates our previous conclusions 
(Decroly & Goldbeter, 1985) on the usefulness of one-dimensional return maps for 
the qualitative understanding of complex modes of oscillatory behaviour in bio- 
logical systems. 

2. Numerical Evidence for Bursting in the Three-variable System 

The model enzymatic system (Fig. 1) is governed by the following set of ordinary 
differential equations 

d a  / d t  = v - o-lob(or,/3) 

d / 3 / d t  = q t o - ,~ (a ,  /3 ) -o-2n( /3 ,  T) (1) 

d y /  d t  = q2o'2n(/3, ~ ' ) -  k~3' 

with 

and 

qb(a,/3) = a(1 + a)(1 +/3)2/[L, + (1 + t~)2(1 +/3)-'] 

r/(/3, T) =/3(1 + 7)2/[L2+ (1 + T)2]. 

Here, parameter v denotes the normalized, constant input of substrate; o'~ and 
o'2 are the normalized maximum activities of enzymes E 1 and Ez, whose allosteric 
constants are denoted by L~ and L2; ks is the apparent first order rate constant for 
the removal of product P2; q~ and q2 are constants arising from normalization of 
the metabolite concentrations (see Decroly & Goldbeter,  1982, for further details). 

h S PI ~ P2 

FIG. 1. Modelof twoautocata ly t icenzyme reactions coupled in series, analyzed forburstingbehaviour.  
The time evolution of the three-variable system is governed by eqns (1). The normalized concentrations 
of S, Pt,  P2 are denoted by a, /3 and ~, in the text. 

System (1) will be studied as a function of v and ks, for the following set of 
parameter values: o-1 = o'2 = 10 s -1, q~ = 50, q2 = 0.02, L~ = 5 × 108, L2 = 100. For these 
parameter values, the two instability-generating mechanisms associated with the 
two positive feedback loops present in the model are both active. The first positive 
feedback loop gives rise to slow oscillations in a and /3 which are relatively 
independent of 3/, owing to the small value of L2 (Decroly & Goldbeter,  1982). The 
second feedback loop produces faster oscillations in/3 and 7, under the control of 
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the  first o s c i l l a t i n g  m e c h a n i s m .  As s h o w n  b e l o w ,  b u r s t i n g  resul t s  f r o m  the  i n t e r a c t i o n  

b e t w e e n  t h e s e  two  m o d e s  o f  osc i l l a t ions .  

T h e  m o d e l  has  b e e n  s t u d i e d  by  n u m e r i c a l  i n t e g r a t i o n  o f  t he  d i f fe ren t i a l  e q u a t i o n s  

f o r  t he  v a r i a t i o n  o f  t w o  k e y - p a r a m e t e r s ,  n a m e l y ,  the  ra te  o f  subs t r a t e  inpu t ,  v, a n d  

the  ra te  c o n s t a n t  fo r  the  d e g r a d a t i o n  o f  t h e  e n d  p r o d u c t ,  ks. T h e s e  p a r a m e t e r s  

g o v e r n  the  i n p u t  a n d  the  o u t p u t  o f  t he  sys tem,  w h i c h ,  as e x e m p l i f i e d  by  g lyco lys i s  

( H e s s  et al., 1969) are  r e ad i l y  a m e n a b l e  to  e x p e r i m e n t a l  con t ro l .  W h e n  b i f u r c a t i o n  

d i a g r a m s  a re  e s t a b l i s h e d  as a f u n c t i o n  o f  ks, t w o  types  o f  s u c h  d i a g r a m s  can  be  

o b t a i n e d ,  d e p e n d i n g  on  the  v a l u e  o f  v ( see  Fig.  2 w h e r e  d a r k  z o n e s  i n d i c a t e  c h a o s ,  
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FIG. 2. Bifurcation diagrams obtained for the differential system (1), by the use of program AUTO 
(Doedel, 1981) supplemented by numerical simulations. We show the behaviour of the system as a 
function of ks, for two different values of v: (a) v=0.45 s-l;  (b) v=0-25 s -1. Other parameter values 
are: tr~ = tr 2 = 10 s -t ,  ql = 50, q2 = 0.02, LI = 5 x 108, L 2 = 100. Indicated are the steady-state value, ao, or 
the maximum value of ~ in the course of oscillations, a M. Stable and unstable solutions are represented 
by solid or dashed lines, respectively. LCt ,  LC2 and LC 3 refer to stable limit cycles. The dark zone 
corresponds to chaotic behaviour, whereas the dashed area denotes complex periodic oscillations, i.e. 
bursting (the envelope of the successive maxima of a is indicated in these zones). 
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and dashed area denotes complex oscillations in the form of bursting). At large 
values of v (e.g. v > 0.42 s-l), the situation is depicted in Fig. 2(a) (a similar diagram 
was given in Fig. 1 of Decroly & Goldbeter, 1982). Here, we will focus on the 
situation that obtains at low values of v (e.g. v < 0.35 s-l); this situation is represented 
in Fig. 2(b), where limit cycle LC~ loses its periodicity through a sequence of 
period-doubling bifurcations giving rise to chaotic behaviour following the scenario 
of Feigenbaum (1978). Upon further increase in ks, the system undergoes complex 
oscillations in the form of periodic or aperiodic bursting. The main difference 
between the two situations considered is that in Fig. 2(b) the transition to chaos 
and bursting originates on the upper branch of periodic behaviour (i.e. from limit 
cycle LC~), whereas it originates on the lower branch (i.e. from limit cycles LC2 or 
LC3) in Fig. 2(a). The transition from the diagram of Fig. 2(a) to that of Fig. 2(b) 
at intermediate values of v is currently under investigation. 
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FIG. 3. Bifurcation diagram for the enzymatic system of Fig. 1, showing the variation of  the number  
of  spikes per period as a funct ion of  parameter k,, in a region where burst ing occurs. For each value of  
k s we have plotted the values of  a corresponding to successive peaks in/3. These values, ~tN(/3m~,) (solid 
lines) are obtained by numerical  integration of  eqns (1). Parameter values are those of  Fig. 2(b). Dark 
zones indicate chaotic behaviour or complex bursting patterns of  the type ~r(p, i , j . . . )  (see text and Table 
1). The dashed line F represents the locus of  t~ values for which homoclinic orbits occur in the 
two-dimensional  (/3-3') reduction of  system (1), when a is taken as a slowly varying parameter  (see 
section 3). 

The situation schematized in the bifurcation diagram of Fig. 2(b) is illustrated in 
more detail in the region of bursting by the diagram of Fig. 3 obtained by numerical 
integration of the differential equations. Shown as a function of ks is the substrate 
concentration, aN(/3,~ax), corresponding to a maximum in the value of /3  during 
simple or complex periodic oscillations. For a given value of ks, several values of 
aN(/3max) can be observed successively over a period. The number p of these values 
varies with ks and corresponds to a bursting pattern comprising p spikes in/3 over 
a period. The diagram shows how the bursting pattern changes with ks. Periodic 
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r eg imes  w i t h  1, 2 . . . . .  p, p + 1 . . .  sp ikes  a re  f o u n d ;  f o l l o w i n g  T o m i t a  & T s u d a  (1980),  

t hese  wi l l  be  r e f e r r e d  to  as or(p)  m o d e s .  A t  l ow v a l u e s  o f  ks, d a r k  z o n e s  i nd i ca t e  

d o m a i n s  o f  c h a o t i c  b e h a v i o u r .  B e t w e e n  the  m o d e s  ¢r(4) a n d  ¢r(5), ¢r(5) a n d  "rr(6), 

¢r(6) a n d  ¢r(7), the  d a r k  b a n d s  a lso  c o m p r i s e  m o r e  c o m p l e x  p e r i o d i c  pa t t e rns  o f  

b u r s t i n g  o f  t he  g e n e r a l  f o r m  or(p, i , j , . . . ) ,  c o n s i s t i n g  o f p  sp ikes  f o l l o w e d  by i sp ikes ,  

t h e n  j sp ikes  (wi th  i , . j , . . ,  r a n g i n g  f r o m  1 to p ) ,  the  (p, i , j , . . . )  p a t t e r n  b e i n g  i t se l f  

r e p r o d u c e d  p e r i o d i c a l l y .  A n  e x a m p l e  o f  the  l a t t e r  b e h a v i o u r  is s h o w n  in Fig.  4(e) ,  

w h e r e a s  s i m p l e r  pa t t e rn s  o f  b u r s t i n g  a re  i l l u s t r a t ed  in Fig.  4 ( b ) - ( d ) .  T h e  ac tua l  
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FIG. 4. Patterns of simple or complex oscillatory behaviour in the biochemical system of Fig. 1. Shown 
are simple periodic oscillations (a) and various patterns of bursting (b-e) represented by the value of/3 
or a as a function of time for different values of v and k s. (b) and (c) exemplify two markedly different 
types of simple bursting. In (d), the value of c~ is shown instead of/3 so as to better indicate the existence 
of a periodic ¢r(4, 4) mode (see section 5). An example of very complex bursting behaviour is shown in 
(e). The origin of such complex periodic pattern or(11, 2, 3, 2) is explained in sections 5(B) and 5(c) by 
means of a piecewise linear map. The curves are obtained by numerical integration of eqns (1) for 
ks = 15 s -t (a), 8 s -1 (b), 1.53 s -t (c), 1.534 s -l  (d) and 2 s -l  (e); o --- 0-25 s -t in (a-d) and v = 0-445 s -l  
in (e). Other parameter values are as in Fig. 2. 
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TABLE 1 

Range of occurrence of the different behavioural modes including chaos and bursting, 
as a function of k~, for v = 0-25 s-~; other" parameter values are those indicated in Fig. 
2(b). Data are obtained by numerical integration of eqns (1). The mode ¢r(i,j) 
represents bursting with a train of i spikes foUowed by a train of j spikes over a period 

ks(s - l )  Behavioural mode k,(s - l )  Behavioural mode 

1.3 ~r(l) 1'87 ~'(11) 
1 "34-  < k s < 1-4 period doubling sequence 1-88 ~r(10) 

1.4 chaos 1 '95 zr(10) 
1-4473 ~-(4) 1.96 ~r(9) 
1.532 ~r(4) 2.23 ~'(9) 
1 "533 rr(4, 4) 2-24 rr(8) 
1-534 rr(4, 4) 2-91 7r(8) 
1 "535 chaos 2.92 ~'(7) 
1.5355 ~-(4, 3) 4.16 rr(7) 
1"536 chaos 4"18 ~'(6) 
1 '537 chaos 5.9 zr(6) 
1.5378 rr(4, 2) 6"0 7r(5) 
1.544 rr(4, 2) 8'5 7r(5) 
1 "545 chaos 8"6 7r(4) 
1"55 ~'(4, 1) = 7r(5) 9'6 7r(4) 
1 "65 lr(5) 9"7 ~'(3) 
1.7 rr(6) 10.8 ¢r(3) 
1'8 7r(6, 2) 10"9 7r(2) 
1 '81 7r(7) 12-5 ~'(2) 
1'85 7r(7) 12-6 rr(l)  
1"86 r r ( l l )  co 7r(l) 

sequence of 7r(p) modes is given as a function of ks in Table 1, for the conditions 
of Fig. 3 (for these parameter values, the most complex patterns of bursting reported 
are of the type 7r(p, i); the pattern of Fig. 4(e) was found by chance for other values 
of v and ks). 

The abrupt rise in the number of spikes per period near ks = 1.8 s -~ is related to 
the presence of  a homoclinic orbit in the two-dimensional (/3 - 3') subsystem (the 
dashed line in Fig. 3 indicates the value of a for which, at a given value of k,, a 
homoclinic orbit obtains in t h e / 3 - 3 '  subsystem). As shown in Fig. 3, and further 
explained in section 3 below, this two-dimensional homoclinic orbit plays an 
essential role in the bursting dynamics of  the three-variable system. 

The phase space representation of a typical bursting behaviour in the three-variable 
system is shown in Fig. 5. This figure shows that bursting orginates here from the 
coupling of  a fast spike-generating mechanism with a slow oscillation. Indeed, a 
limit cycle resulting from the interaction of a and /3 passes into a region of the 
phase space where the interactions between /3 and 2/ produce rapid oscillations. 
The resulting trajectory presents the aspect of a " folded"  limit cycle (Schulmeister 
& Sel'kov, 1978). As in previous studies of  bursting (see, e.g., Rinzel & Lee, 1986), 
the existence of  distinct time scales permits one to comprehend such complex 
oscillatory behaviour by analyzing a reduced two-dimensional system. 
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FIG. 5. Phase space representation of bursting. Two oscillatory mechanisms are coupled in the 
three-variable system of Fig. 1, in such a way that the limit cycle induced by the mechanism (a-/3) passes 
in a region of the phase space where the second mechanism (fl-y) produces rapid oscillations. The curve 
is obtained by integration of eqns (1) for the parameter values of Fig. 2(b) with k~ = 5 s -t. 

3. Bursting: A Two-dimensional Analysis 

Numerica l  s imulat ions show that the dynamics  o f  system (1) dur ing bursting can 
be separated into two phases. In the first phase, /3  and y remain close to the steady 
state solut ion o f  eqns (2a, b) 

df l /d t  = ql~rl~ - o-27 / (2a) 

d y / d t  = q 2 0 r 2 T / -  k~y (2b) 

whereas t~ slowly increases. In the second phase, /3  and Y undergo  rapid oscillations 
whereas ~ slowly decreases. We are thus led to the conclusion that, especially in 
the second  phase,  a may  be considered as a slow variable when compared  to ]3 
and y. This approx imat ion  is not as valid dur ing the first phase o f  bursting, but it 
is nevertheless suppor ted  by the fact that  the steady-state solution o f  eqns (2a, b) 
is then relatively independent  o f  a. The problem of  matching the two phases will 
not  be cons idered  here in further  detail. 

The s lower variat ion in a allows us to recast the three-variable system (1) in the 
form of  eqns (3) which can be analyzed in the limit e-*0.  

d a / d t  = e ( v ' -  cr'x¢~ ) (3a) 

d/3/dt = q~cr~<b - tr2~ / (3b) 

d y / d t  = qEcr27/- k~y (3c) 

where ev'= v and e ~  = crl. 
The substrate concentra t ion,  a, can now be treated as a s lowly-varying parameter  

influencing the dynamics  o f  the fast 1 3 - y  subsystem governed by eqns (3b, c). 
Strictly speaking,  it is clear that  the limit e -> 0 is far f rom being app roached  in eqns 
(3), since v' and tT~ should  then go to infinity. The two-variable approximat ion  
nevertheless yields interesting insights into the dynamics  o f  the three-variable system. 
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By us ing the program A U T O  for the numer ica l  con t inua t ion  of steady-states and  
per iodic  so lu t ions  in systems of ord inary  differential  equa t ions  (Doedel ,  1981), we 
have ob ta ined  b i furca t ion  diagrams represent ing the behav iour  of the/3-3' subsystem 
as a func t ion  of a, for decreasing values of ks (see Fig. 6). The behav iour  of the 
fast subsystem is indica ted  by the steady-state value(s)  of/3,  and  by the m a x i m u m  
and  m i n i m u m  values of/3 in the course of oscillations. (Stable and  uns table  steady 
or per iodic  states are represented by solid and  dotted lines, respectively.) The actual  
dynamics  of  the three variable  system is represented by sketching the var ia t ion of 

/3 as a func t ion  of a in the course of t ime (solid lines with arrows). Notice that,  
for the sake of  clarity, these schematic trajectories are made well dist inct  from the 

steady-state branches  of/3, thus giving the wrong impress ion that/3 may take negative 

values. 
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FIG. 6. Bifurcation diagrams of the two-dimensional subsystem fl-y (eqns 2a, b) obtained by use of 
program AUTO (Doedel, 1981). The steady-state value of fl or its maximum value in the course of 
oscillations are represented as a function of a considered as a parameter, for different values of ks: 
10 s -t (a), 7.78 s -1 (b), 4-5 s -1 (c), 2.7 s -~ (d), 1-7 s -l (e), 1.2 s -~ (f). Solid and dotted lines denote stable 
or unstable (steady or periodic) regimes. These bifurcation diagrams are independent of v; other parameter 
values are as in Fig. 2. The behaviour of the three-dimensional system which is schematically represented 
by the lines with arrows in (a), (b), (c) and (e), can be inferred from these bifurcation diagrams when 
taking into account the slow variation of a. Also shown are the values of t~ corresponding to bifurcation 
points in the two-dimensional (fl-y) system: aLl and aa2 indicate the limit (turning) points of the 
hysteresis loop, all, and all2 denote Hopf bifurcations, whereas at, and Otr2 are the values for which 
homoclinic orbits occur. 

For  low values of  ~t, the steady-state values o f /3  and  3' are close to zero. For  
large values of c~, the steady-state value of/3 is high, and  remains  practically constant  
as c~ increases.  Due  to the positive feedback exerted by /3  on enzyme E l ,  these two 
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branches of  steady-states merge through a hysteresis loop: in a certain range of a 
values, bounded  by two limit points, aL, and aL2, the system thus admits three 
steady-states. For the parameter  values considered, the lowest steady-state is always 
stable (stable node); the intermediate state is always unstable (saddle point), whereas 
the highest state may be stable or unstable depending on the values of  a and ks. 
When it is unstable it may be surrounded by a limit cycle, as in Figs 6(c) and 6(d). 

The six diagrams of  Fig. 6 illustrate different patterns of  bursting or simple periodic 
oscillations. The temporal  evolution of the three-variable system can be explained 
according to these diagrams in the following manner.  The rapid variation of/3 and 
y forces the system to stay on the steady-state branch where d/3/dt = d y / d t  =0 ,  
except when o~ reaches one of  the limit points of  the hysteresis loop. Then, as 
indicated in Fig. 6, the dynamics is almost vertical since [da/dt[ << [dy/dt[  < [d/3/dt[. 
On the lower branch of steady-state, the two enzymes proceed at a low pace as 
there is almost no reaction, given that /3 and 3' are very low and cannot activate 
the enzymes; substrate input largely overcomes substrate consumption and a will 
rise continuously at a rate governed by the constant input of  substrate, v. When the 
system reaches the limit point, aL2, it jumps abruptly to the upper  branch. As /3 
and 3' are higher on this branch, both enzymes are activated, in such a way that 
the reaction transforms a into/3 and/3 into 3' at a high rate. As a result, the substrate 
level ct decreases and the system moves to the left on the upper  branch until it 
reaches the limit point, aL,,  in which it jumps rapidly to the lower branch. The 
overall behaviour  is thus a simple limit cycle of  the relaxation type which is indeed 
observed for high values of  k~(> 13 s -1) such as in Fig. 6(a), when the steady-state 
remains a stable node on the two branches of  the hysteresis loop in the range 
c~/-,-aL2. For intermediate values of  ks, as in Fig. 6(b), the steady-state on the 
upper  branch becomes unstable through a H o p f  bifurcation in a = c~H, > a L2- I f  
a H, is sufficiently close to a L2, the steady-state on the upper  branch is a stable focus 
in at.  2. Then, as e is not strictly 0 in eqns (3), the approach towards the upper  
branch of steady-states takes the form of a spiral. This results in a bursting pattern 
in which a series of  small wiggles, whose amplitude decreases rapidly, occur on the 
top of a large amplitude oscillation (see Fig. 4(b)). 

For lower values of  ks, the Hopf  bifurcation point a ~, moves to the left of  a/-2 
and the upper  steady-state is an unstable focus surrounded by a stable limit cycle. 
The domain of  oscillation on the upper  branch extends from a H, to a second H o p f  
bifurcation point, a H2. In Fig. 6(c), the value of ks is such that a/-, < a n, < a/-2 < a H.. 
We then obtain a bursting pattern with a number  of  large-amplitude spikes in /3 
over a period (Fig. 4(c)). The number  of  spikes is governed by factors such as the 
rapidity of  evolution on the upper  branch (see below) and by the distance between 
a L, and a H2- 

In Fig. 6(d), the value of  ks is such that OtLt < all,  < a/-/2 < O:l_ 2. In such a situation, 
the ampli tude of  the spikes in fl may in principle pass through a maximum over a 
period; this is, however, not observed here in a clearcut manner  as an2 remains too 
close to a L2. 

In ks = 1.76 s -I,  the ampli tude of  the limit cycle on the upper  branch has increased 
to the extent that the limit cycle becomes tangent to the intermediate unstable branch 
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of  the hysteresis loop,  and thus collides with a saddle point  (homoclinic tangency). 
Consequent ly ,  two homocl in ic  orbits appear  in the /3-3, subsystem for smaller ks 
values (Fig. 6(e)). These orbits, which are trajectories that  originate f rom a saddle 
point  and return to it after an infinite time (Guckenhe imer  & Holmes,  1986), occur  
for the values t~r, and ar2,  and move apart  as ks decreases, until only one such 
orbit remains for  k~ < 1-6 s -~ (Fig. 6(f)).  

Between a r ,  and ar2,  no stable limit cycle exists on the upper  b ranch  and the 
system evolves to the lower stable branch which remains the only attractor. Then,  
in the course o f  bursting, the transit ion to the lower branch occurs  in Fig. 6(e) as 
a reaches the value at2 rather than aL, SO that the number  o f  spikes diminishes as 
the accessible oscil latory domain  shrinks (birhythmici ty has been found  in a similar 
situation in a three-variable model  for c A M P  oscillations in Dictyostellium cells 
(Martiel & Goldbeter ,  1986); the occurrence  o f  such a p h e n o m e n o n  in these condi-  
tions has not  yet been demonst ra ted  in the present model) .  The reduct ion in the 
number  o f  spikes becomes more and more  marked as k, decreases until bursting 
disappears  altogether.  Then a simple limit cycle is established, as shown by the 
bifurcat ion diagram of  Fig. 3. The latter d iagram also indicates that  this transition 
occurs th rough  period doubl ing bifurcations and chaos. 

A further  effect o f  the homocl in ic  orbit  is illustrated in the time evolution shown 
in Fig. 7. For  ks values slightly above homocl in ic  tangency (ks ~ 1-8 s-~), the limit 
cycle comes very close to the saddle point  for intermediate a values (the situation 
is then intermediate  to those depicted in Figs 6(d) and 6(e)). The proximity to the 
steady-state o f  the reduced  system causes a slowing down of  the /3-3' oscillations. 
The pat tern o f  burst ing is then characterized by a time interval between successive 
peaks which passes th rough  a max imum over a period. Such situation o f  "inverse 
parabol ic"  burst ing has to be contrasted with the opposi te  behaviour ,  referred to 
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FIG. 7. Temporal behaviour of system (1) obtained for v = 0-25 s-~ and k~ = 1.86 s-t, near the k, value 
for which homoclinic tangency occurs in the two-dimensional (/3-3,) subsystem. The proximity of the 
/3-3, limit cycle to the unstable saddle point of the two-dimensional subsystem in a situation intermediate 
between those of Figs 6(d) and 6(e) causes a slowing down of the oscillations in the middle of a train 
of spikes. As a consequence, the interspike interval passes through a maximum in the course of oscillations, 
a situation which is referred to in the text as inverse parabolic bursting. 
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as parabolic bursting, in which the time interval between successive spikes passes 
through a minimum over a period (Koppel & Ermentrout, 1986; Rinzel, 1986). 

The small-amplitude interburst spikes, which are observed in complex patterns 
of bursting such as those shown in Fig. 4(e), may also be ascribed to the existence 
of  homoclinic orbits. Such patterns cannot be explained readily by simple consider- 
ations of  the diagrams in Fig. 6, as it would seem impossible to initiate a train of 
spikes for values of  a below ct L2. Complex patterns of  bursting, whose origin will 
further be discussed in section 5 below, might in fact be due to the slowing down 
of the/3-7 oscillations near homoclinic tangency, possibly when a L, is close to an , .  
Then indeed, as the evolution becomes "f rozen"  when/3 and 3' approach the saddle 
point, substrate input can temporarily exceed substrate consumption, causing one 
or more series of secondary bursts in/3. 

The results of  the two-dimensional analysis of Fig. 6 are summarized in Fig. 8 
which shows as a function of ks the loci of the limit points at., and aL_,, the Hopf  
bifurcations a H, and a H2, and the at values in which homoclinic orbits are observed, 
a r .  The various critical points in the bifurcation diagrams of Fig. 6(a)-(f)  can be 
recovered from Fig. 8 by horizontal sections at the corresponding values of ks marked 
a-f. At point D in Fig. 8, the Hopf  bifurcation occurs at the value for which the 
saddle point and the upper state of the hysteresis loop coalesce (i.e. an ,  = a q ) .  
This situation, which corresponds to a double instability in which two conjugate 
eigenvalues cross the imaginary axis with their imaginary part vanishing simul- 
taneously, gives rise to a homoclinic orbit (Baesens & Nicolis, 1983). Noticeable in 
this diagram is that the limit point a L, remains practically unchanged as ks varies. 

° [ - - (  1 ] ],o 
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FIG. 8. B•havi•ur•fthetw•-dim•nsi•na••-ysubsyst•m(2a•b)inthepa•am•t•rspac•(ot-k•)••btain•d 
by use of program AUTO (Doedel, 1981). This figure summarizes the results presented in Fig. 6. The 
positions of the lower and upper limit points, the two Hopf bifurcation points, and the presence of the 
homoclinic orbit are indicated by aL,, aL:, a t - t  t ,  OCH 2 and ar ,  respectively. The dotted lines (a-f) 
represent horizontal sections through the parameter space for different values of k,, and correspond to 
the bifurcation diagrams (a-f) of Fig. 6. 



FROM SIMPLE TO COMPLEX OSCILLATORY BEHAVIOUR 231 

How good a picture of  the dynamics of  the three-variable system is provided by 
the two-dimensional reduction depends on the value of parameter  e in eqns (3). A 
variation in e corresponds to a simultaneous variation of v, o-~ and q~, such that v 
and cr~ are changed by the same factor, while the product  q~o-~ remains constant. 
Most of  our simulations were initially done for e = 1, and linear stability analysis 
shows that the steady-state of  the three-dimensional system remains unstable in a 
limited range above and below this value. For the parameter  values considered, 
with v' ranging from 0.1 to 0.3 s -~, the oscillatory behaviours (including bursting) 
are only observed for e values ranging approximately from 0.5 to 2. The contradiction 
with our taking the limit e -~ 0 is only apparent,  as the rate of  variation of/3 and 3' 
are larger than that of  a by two and one orders of magnitude, respectively. Appropri-  
ate normalization of time in eqns (3) would therefore yield smaller effective values 
of  e. 

The influence of e is displayed in Fig. 9, where the three-dimensional attractor 
is shown for e = 0"5 and e = 2 (the dynamics for the same parameter  values and 
e = 1 is shown in Fig. 5). I f  the motion globally takes place on the same surface, 
the rate of  variation of u (governed by e), influences the period and the number  
of  spikes in agreement with intuition: the faster a varies, the fewer are the spikes 
and the shorter is the period. Parameter v by itself does not influence the bifurcation 
patterns of  Fig. 6 as it does not appear  in the equations which govern the two- 
dimensional subsystem (/3-3'). Increasing (decreasing) v at constant o-~ will merely 
decrease (increase) the period of quiescence separating two successive bursts, by 
modulating the variation of  a. 

(o) 
¥ 

(b) 
Y 

FIG. 9. P h a s e  s p a c e  r e p r e s e n t a t i o n  o f  the  d y n a m i c s  o f  sys tem (3) fo r  two  d i f fe ren t  va lues  o f  e, 0 .5  
(a)  a n d  2 (b) .  P a r a m e t e r  va lues  are :  o' = 0.25 s - t ,  o"  t = 10 s - t ,  a n d  k~ = 5 s - l ;  the  c o r r e s p o n d i n g  p a r a m e t e r  
va lues  in s y s t e m  (1) are :  o = 0-125 s - l ,  o" t = 5 s - l  a n d  qn = 100 (a) ;  o = 0-5 s -1,  tr  1 -- 20 s - t  a n d  ql = 25 (b).  
O t h e r  p a r a m e t e r  va lues  a re  as in Fig.  5 w h e r e  e = 1 in eqns  (3). 

The above analysis of  the two-variable reduction to the fast subsystem (/3--/) 
controlled by the slowly varying parameter  a provides a qualitative explanation for 
the origin of  various patterns of  bursting. This analysis does not account, however, 
for complex oscillatory phenomena such as chaos or period-doubling bifurcations 
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which occur at low values of  ks (see Fig. 3). This is not surprising as the assumption 
that y varies more rapidly than a breaks down for such ks values. The two-variable 
analysis provides a first approach to the understanding of how the number of spikes 
or the pattern of  bursting depend on the key parameters of the model. Complemen- 
tary insights can be gained from a further simplification of  the dynamics, by 
consideration of one-dimensional maps. 

4. Analysis of a One-dimensional Map Derived from 
the Three-dimensional System 

The reduction of a very dissipative three-dimensional system of ordinary differen- 
tial equations to a one-dimensional recurrence equation is often used to analyze 
qualitatively the dynamical behaviour of the original system (Collet & Eckmann, 
1980; Gumowsky & Mira, 1980; Shaw, 1980; Kapral et  al., 1982; Glass et  al., 1983). 
This method has proved particularly useful for clarifying the structure of the 
attraction basins in the situation where system (1) possesses two or three periodic 
attractors (Decroly & Goldbeter, 1985). Such a reduction to a one-dimensional map 
will be used to understand the complex sequence leading from bursting to chaos. 
We shall consider first how a map can be obtained by numerical integration of eqns 
(1). On the basis of these results, we shall construct and analyze, in section 5, a 
piecewise linear map with closely related characteristics. 

The reduction of the dynamical system to a one-dimensional map is only justified 
in the case of a very dissipative system, since in that case three-dimensional phase- 
space trajectories rapidly evolve to a nearly two-dimensional sheet on which they 
remain trapped. The intersections of the trajectories with a Poincar6 section trans- 
verse to the flow thus show the evolution on a nearly one-dimensional curve. It is 
then possible to make a one-to-one correspondence between a one-dimensional 
coordinate on that curve and the place where the three-dimensional trajectory 
intersects the cross-section. This is generally the case for system (1) (Decroly & 
Goldbeter,  1985) if the Poincar6 section is suitably chosen. 

In the course of  integrating eqns (1), we construct the map in the following way. 
Each time/3 reaches a maximum, we note the value of a:  aN(/3max)- We thus obtain 
a discrete series of a values, and then plot the ( N +  1)th value as a function of the 
Nth. Several maps aN+~ = f ( a N )  are presented in Fig. 10 for different values of the 
parameters. It is particularly easy to visualize the shape of the map when the 
dynamical regime is chaotic (Fig. 10(a)), since in such cases the curve is almost 
continuous. The fact that we obtain a continuous curve for a chaotic dynamics 
indicates that chaos is deterministic: the behaviour results from a dynamical instabil- 
ity in a deterministic system, and not from statistical noise or numerical errors 
superimposed on a stable periodic motion. 

In situations where bursting occurs, only a few points corresponding to the 
successive maxima in/3 are observed since the motion is periodic. A bursting pattern 
with p peaks per period corresponds to a periodic orbit with p points in the map 
(see e.g. Fig. 10(b) for a bursting pattern rr(4) with four spikes per period). 
Interpolation, realized by joining the points by a smooth curve or by taking several 
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FIG. lO. One-dimensional maps associated with bursting and chaos in the system of Fig. 1. The 
procedure for the construction of the map aN+t(flrna,) = f [ a N ( / 3 ~ x )  ] is described in the text (see section 
4). Shown are the maps obtained by numerical integration of  eqns (1) with the parameter values of  Fig. 
2(b), for different values of  k,: 1.537 s -I (a), 1.5s - t  (b), 1.534s -l  (c), 1.539s -l  (d), 1.86s - l  (e). The 
aperiodic behaviour in (a) gives rise to a continuous curve whereas bursting with p spikes per period 
corresponds to p points (crosses) on the map. Panels (b) and (e) show maps associated with the simple 
patterns of  bursting ~-(4) and rr(11); maps corresponding to complex patterns of bursting are shown in 
(c) and (d). The situations illustrated in (c) and (e) correspond to the time evolution in Figs 4(d) and 
7, respectively. 
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sets of  initial conditions far from the asymptotic regime, shows that the shape of  
the map remains similar to that which is obtained in the chaotic regime. The maps 
in Figs 10(c) and (d) correspond to more complex patterns of bursting, namely 
7r(4, 4) (corresponding to the oscillation of  Fig. 4(d)), and 7r(4, 2), respectively. 

The method used here to obtain one-dimensional maps is slightly different from 
that described in our previous work (Decroly & Goldbeter, 1985). There, the distance 
from the steady-state to the intersection of  the trajectory with a Poincar6 cross-section 
was used as discrete variable. The two methods should be equivalent, at least from 
a qualitative point of view (Shaw, 1980). We here used aN(tim,x) as discrete variable, 
because it allows a direct comparison with the results obtained in the preceding 
sections (see particularly Fig. 6 where the maximum of/3 is plotted as a function 
of a) .  

An important feature of  the present model, revealed by the analysis in section 3, 
is that the jump that initiates a new cycle of  bursting after substrate repletion always 
occurs for a values near the second limit point, aL2. As shown in Fig. 8, this limit 
value remains practically independent of ks. As a result, the first aN(/3m,x) value of  
a new bursting phase generally has the same magnitude, independently of the last 
aN-l(/3max) value of the preceding train of spikes. This accounts for the horizontal 
part situated to the left of  the well in the map of  Fig. 10(a), where aN+t = M (M 
is a constant independent of aN and relatively insensitive to ks). This property will 
be of primary importance for the stability of the orbits as well as for the structure 
of  the transitions from one pattern of bursting to another or from bursting to chaos. 

When a has reached its largest maximum, M, which corresponds to the first/3-3' 
cycle after the jump, each oscillation in/3-3' will result in removing approximately 
the same quantity of  substrate (denoted a), since the amplitude of  oscillations in fl 
remains practically constant in the range of variation of a (see Fig. 6(c)). This is 
why the right part of the maps is practically linear and parallel to the bisectrix for 
high aN values: aN+t ~ aN --a. For lower a values, the amplitude of the limit cycle 
decreases as one gets close to the Hopf  bifurcation point. Accordingly, the amount 
of a removed by each cycle is decreased, and the curve gets closer to the bisectrix. 
The minimum value of  aN corresponds to the return of  the system to the lower 
branch of the hysteresis loop in the diagrams of Fig. 6; the next value, aN+t = M, 
corresponds to the jump from the lower to the upper branch. Therefore M is close 
to a L2- 

Between the left and right parts of the map, numerical simulations in the chaotic 
regime show a smooth curve joining the two extremes described above. The intersec- 
tion of  the curve with the bisectrix is the fixed point of  the map which can be stable 
or unstable depending on whether the absolute value of the slope of  the map is 
respectively smaller or larger than unity in this point. 

Upon parameter variation, the curve transforms smoothly. Understanding how 
the shape of  the map depends on key parameters is particularly useful for the 
construction of abstract maps carried out in section 5. The influence of parameters 
v and ks on the dynamics of  the differential system, and hence on the shape of  the 
map, depends on the existence of the homoclinic orbit. When k, is above the value 
1.9 s -t ,  i.e. when no homoclinic orbit exists in the two-dimensional subsystem, an 
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increase in k~ produces a decrease in the number of spikes per period (see Fig. 3). 
In contrast, in the domain of  existence of the homoclinic orbit in the two-dimensional 
system, the number of peaks per period decreases when ks diminishes. 

These opposite effects of ks on the dynamics can be explained qualitatively by 
means of one-dimensional maps as follows. Beyond the domain of existence of the 
homoclinic orbit (k.~ > 1-8 s-~), an increase in ks prevents the accumulation of 3'. 
Thus the oscillations in /3-3, consume a smaller amount of /3  as the enzyme E2 is 
less activated. The result is a net increase in a, the value of a which is removed by 
each /3-3, oscillation as enzyme E~ is more activated. As shown in section 5, this 
increase in a produces a decrease in the number of peaks over a period. When 
homoclinic orbits obtain, the decrease in the number of peaks during bursting as 
ks diminishes is due to a reduction in the range of a values supporting oscillations 
in the/3-7 subsystem (see Figs 6(e) and 8). 

The effect of  parameter e on the dynamics of the system can be comprehended 
in a similar manner. This parameter governs the rate of variation of a (see eqns 
(3)). Upon increasing e, this rate increases and the amount of a consumed over a 
spike--reflected by the value of a in the map---rises. The number of peaks per period 
therefore decreases when e increases (see Fig. 9). 

No effect of ks on the maximum value of a, i.e. M, can be observed, since, as 
can be seen in Fig. 8, the position of the lower limit point a L. is almost unaffected 
by ks and, as pointed out previously, M ~ c~ L2- Moreover, as the bifurcation diagrams 
of Fig. 6 are independent of  e, this parameter certainly does not influence the value 
M of the maximum, as long as it remains sufficiently small so that the separation 
into two time-scales holds for system (3). 

That the existence of  a homoclinic orbit in the /3-3' flow for lower ks values 
strongly influences the dynamics of the three-dimensional system has been discussed 
above and is made clear by Figs 3, 6 and 7. The bump in the map of  Fig. 10(e) 
reflects the phenomenon of inverse parabolic bursting shown in Fig. 7. This bump 
results from the fact that the quantity of  a removed by each spike is significantly 
reduced as the constant input of substrate counterbalances its depletion, since the 
system spends more time near the saddle where the values of/3 and 7 are low. For 
lower c~ values, the removal of a during bursting accelerates together with the 
motion on the /3-3' limit cycle, as the latter moves apart from the saddle. This 
behaviour also explains the sudden increase in the number of  spikes per period, 
following an increase in ks near homoclinic tangency (see Fig. 3). Furthermore, in 
these conditions, for sufficiently large values of v (e.g. v = 0-35 s-~), the more rapid 
substrate input can counterbalance the removal of a due to/3-3, oscillations, so that 
a stable, non-bursting limit cycle is found for ks values close to the appearance of 
the homoclinic orbit (ks = 1-8 s -~) (compare also Figs 2(a) and 2(b). This limit cycle 
is accompanied by only a slight variation in a and mainly originates from the/3-3, 
mechanism of  oscillations (see Martiel & Goldbeter  (1986) for a similar behaviour 
in a related biochemical system). 

The maps of  Fig. 10 provide a simple picture of  the oscillatory dynamics of system 
(1). We have shown that the effect of some key parameters on the shape of these 
maps can be understood intuitively. This allows us to understand the global features 
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of  the generation of bursts and to roughly predict the way in which a variation in 
key parameters influences the number of  spikes per period. 

A conspicuous feature of  the maps of Fig. 10 is that they are particularly amenable 
to a piecewise approximation by linear functions. The advantage of  piecewise linear 
maps similar in shape to the maps of Fig. 10, is that they can be readily analyzed, 
thus leading to qualitative and quantitative predictions that will largely hold for the 
actual maps and, hence, for the three-dimensional system. In particular, the study 
of  piecewise linear maps will allow us, in the next section, to understand the 
continuous passage from a pattern of bursting with p spikes to a pattern with p + 1 
spikes per period, following variation of a control parameter. Obtaining complex 
periodic orbits in the piecewise linear map also throws light on the origin of complex 
patterns of  bursting such as that shown in Fig. 4(e). 

5. Analysis of  Bursting by means of  a Piecewise Linear Map 

As explained above, the portions of the map obtained numerically can be approxi- 
mated at both low and high values of a by linear expressions, corresponding to a 
horizontal line and to a parallel to the first bisectrix, respectively. For simplicity, 
we may further approximate the curved central part of the map by a linear function 
of  o~ joining the other two linear parts. These approximations yield the following 
piecewise linear map xn+~ =f(xn) ,  represented in Fig. 11 

x,--<l: X,+l=fl(xn)=M (4a) 

1 <xn--<m: x,,+l=f2(x,,)=-bx,,+b+M (4b) 

m<x,~: xn+l=f3(x,,)=x,,-a (4c) 

where the upper  bound of the domain of definition off1 (x~) is taken, for convenience, 
as equal to unity, and m is the abscissa of  the minimum of the map, corresponding 
to the intersection of f2(x)  and f3(x), i.e. 

m = (a+ b + M ) / ( b +  1) (5) 

Equations (4) yield the value of x,+~ for a given value of x,. At the next iteration, 
xn+~ is used to generate x~÷2. We thus obtain a sequence of  values along one 
dimension which can be seen as the axis of abscissas in Fig. 11; we shall refer to 
these values as x. Moreover, we shall denote by xp and pth value of  x in a periodic 
orbit starting in x~ = M. 

Notice that the lowest value that can be reached on the map, m - a ,  may become 
negative at large values of  a when M is small. Such negative values are naturally 
excluded when X represents a concentration (as in Fig. 10); we shall not worry 
about this problem, as realistic values of x are readily obtained by a suitable change 
in coordinates or an appropriate choice of  M, b and a. 

Given the simplicity of  the piecewise linear approximation, we should not expect 
a total agreement with the behaviours of  the maps obtained numerically. However, 
as shown in another context by Tomita & Tsuda (1980), due to the similarity in 
shape between the continuous and piecewise linear maps, the latter nevertheless 



b ~ b 

m-a I i  I I ~ f I If I 

F R O M  S I M P L E  TO C O M P L E X  O S C I L L A T O R Y  B E H A V I O U R  

(b )  • 

q 

1 x,, m x B M I xArn xs M 

Xn Xn 

237 

FIG. 11. Piecewise linear map constructed as an approximation of the maps obtained numerically in 
Fig. 10. The map consists in three segments given by eqns (4a-c) and is controlled by three parameters, 
M, a and h; m is the abscissa of the minimum of the map, and m-a the point to which it iterates. The 
fixed point x* is the intersection of the map with the first bisectrix, and is unstable (as it is here) when 
b >  1. Points falling between xA and xa are constrained to iterate in two steps to x = M, as the left part 
of the map, corresponding to ft in eqn (4) is horizontal. The thin solid line with arrows shows the 
trajectory corresponding to a bursting pattern ¢r(3) in (a) and w(3, 2) in (b). Parameter values are h = 5, 
M = l l ,  w i t h a = 6 i n ( a )  and a = 4"3 in (b). 

provide a qualitative explanation for the sequence of bifurcations leading from 
7r(p) to 7r(p+ 1) bursting patterns. The detailed analysis developed below shows 
that this sequence contains more complex patterns of bursting, of the type shown 
in Fig. 4(e). To our knowledge, such patterns have not previously been described. 

(A) CONSTRAINED PERIODIC ORBITS (CPOs): ORIGIN OF STABLE 7r(p) MODES 

When M >  1, the fixed point x* of the map, where x ,+~=x, ,  ( x * = f ( x * ) ) ,  is 
located on its central segment (eqn 4b). The fixed po;"* x * =  ( b + M ) / ( b +  l),  is 
unstable provided that the absolute value of the slopeJ-bll ' ,  is larger than one. In 
such a case, let us follow the dynamics of the map when starting in x~ = M (thin 
solid line with arrows in Fig. I 1). At each iteration, the abscissa of  the representative 
point will decrease stepwise from M by the quantity a (eqn 4c), thus giving a 
sequence x p  = M - ( p - 1 ) a .  This goes on as long as the abscissa of  xp_~ remains 
larger than rn. When xp_, becomes smaller than m, the next point xp is given by 
either eqn (4a) or eqn (4b) depending on whether xp_~ is smaller or larger than unity. 

An essential feature of the map is that the set of the points xp located below unity 
shrinks to a single point as all these points iterate to a single value, xp÷] = M, which 
is the initial point. We thus obtain a periodic orbit of period p, given by the general 
eqn (6) 

f ( x l )  = x : , f ( x 2 )  = x 3 ,  . . . f ( x p )  = x, -= M. (6) 

The points of  this periodic orbit correspond to fixed points of  the pth iterate of  the 
map, i.e. 

fP (X!)  = Xl,  fP  (x2) = x2, • • • fP (Xp) = Xp. (7) 
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Whethe r  the  f ixed po in ts  given by  eqn (7) are s table  d e p e n d s  on the abso lu te  va lue  
o f  the der iva t ive  o f f P ( x )  in these points .  By us ing the chain  rule and  eqn (6), we 
ob ta in  

( f P ( x , ) ) ' = . . . =  (fP(Xp))'  = f ' ( x l ) . f ' ( x 2 ) , . . .  f ' ( x  v) (8) 

Thus,  a p e r i o d i c  orb i t  given by eqn (6) is s table  as long as cond i t i on  (9) holds  

l-I f ' ( x , )  < 1. (9) 
i = l  

A t ra jec tory  s tar t ing f rom x~ = M which  arr ives at xp < 1 and  there fore  goes back  
to xp+l = M is a lways  s tab le  since f ' ( x p ) = f ' ( M ) = 0 .  We refer  to such t ra jec tor ies  
as constrained periodic orbits (CPOs) .  The  CPOs  represen t  supe r s t ab le  orbi ts  (Col le t  
& Eckmann ,  1980) as they  pass  th rough  a po in t  where  the s lope  o f  the  m a p  is nil. 
However ,  the  presen t  m a p  conta ins  a finite d o m a i n - - r a t h e r  than  a single p o i n t - -  
where  the s lope  is nil. As a consequence ,  we ob ta in  here  CPOs  over  a large range  
o f  p a r a m e t e r  values  whereas  supers t ab le  orb i t s  occur  only  for  pa r t i cu l a r  p a r a m e t e r  
values  in maps  admi t t i ng  a curved ex t r emum ( K a p r a l  et al., 1982). 

CPOs  exis t  on ly  i f  the  o rd ina te ,  (m-a) ,  o f  the m i n i m u m  of  the m a p  is be low unity,  
which  cond i t ion ,  by  means  o f  eqn (5), takes  the  form 

a> ( M -  1)/b. (10) 

I f  the cons t r a in t  (10) app l ies ,  the d o m a i n  o f  po in t s  that  i tera te  t owards  values  o f  x 
lower  than  one  is b o u n d e d  by  the two p re images  o f  x = 1 (i.e. the po in ts  i te ra t ing  
in one s tep  to x =  1) (see Fig. 11). The abscissas ,  xa  and xB, o f  these poin ts  are 
given by  eqn (11) 

X A = ( M + b - 1 ) / b ,  x s = a + l .  (11) 

Fo r  given values  o f  a, b and  M,  the m a p  admi t s  at most  one CPO.  D e p e n d i n g  
on the p a r a m e t e r  values ,  one observes  s imple  or  complex  CPOs  on the map ,  

6 5 4 3 2 P 

r - r - T - T - I  " .' • 

FIG. 12. Domains of a values for which periodic ~r(p) modes--i.e, simple CPOs--exist in the map 
given by eqn (4). For the fixed values b= 5, M = 11, we find these orbits as explained in section 5(A) by 
taking into account eqn (11) and solving the inequality x A <- xp_~ <- xB, where Xp_t is given by eqn (12a) 
(see also Fig. 11). The dotted line below a = 2 corresponds to a region where the constraint (10) does 
not apply. Then, the minimum of the map is above 1 and the jump to M will never occur, so that simple 
or complex CPOs are excluded; only unstable periodic orbits or chaos obtain in these conditions. The 
thick lines are the loci of existence of the simple periodic modes ~r(p) (the values of p are indicated 
above these lines). The periodic mode ~'(2) extends until a = oo, as the maximum M iterates directly to 
a value comprised between x A and x B. Complex CPOs obtain in the intervals between rr(p) modes (see 
Figs 13 and 14). 

Page 238: In l ine 10 o f  the cap t ion  to Fig. 12 rep lace  "a  value  compr i s ed  be tween  
xa and  x s . "  with " a  va lue  lower  than  one . "  
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corresponding to simple or complex bursting patterns• Simple CPOs, denoted 7r(p), 
obtain whenever the (p - 1)th descending iterate of xt = M falls between XA and xa. 
More complex CPOs denoted ~'(p, i, j , . . . ) ,  occur when the representative point 
moves down p times along the right part of the map (4c), and is reinjected upwards 
on the central part of the map (4b), without passing between xA and XB (see Fig. 
l lb) .  Then, it decreases i times on the right part of the map (i<-p, since the starting 
point is then lower than M), falls again outside the constraint, is reinjected upwards, 
decreases for j iterates ( j < - p ) . . .  until it finally falls between XA and XB. It then 
iterates to M and thereby completes the CPO. Depending on the parameter values, 
the period of such orbits can be arbitrarily long, as the trajectory may undergo a 
large number of cycles before landing in M. There exist isolated values of the 
parameters such that no CPO obtains; trajectories then lead either to an unstable 
cycle, or end up in the unstable fixed point x*. Whether or not truly aperiodic orbits 
may occur in the piecewise linear map for particular parameter values has not been 
demonstrated. 

Upon increasing a, as the distance between XA and XB increases most trajectories 
will sooner or later enter the interval bounded by XA and xs, thus giving rise to a 
stable, simple or complex CPO. We can construct explicitly all the successive points 
of simple CPOs of period p, corresponding to bursting patterns with p spikes• These 
orbits are of two kinds which differ by the last term, xp before the jump to 
xp÷~ ~ xl = M. 

When m <- xp-1 -< xa, starting from Xl = M, the successive points of the CPO 7r(p) 
are given by 

x l = i  

x 2 = x l - - a = M - a  

xp_l = xp_2-a= M - ( p -  2)a 

xp = xp_l - a =  M - ( p - 1 ) a .  (12a) 

On the other hand, when XA<--Xp_I <--m, the successive points x l , . . . ,  xe_~ are still 
given by eqn (12a), but the last point now obeys eqn (12b) 

Xp = - b x p - t + M + b .  

= - b ( M  - (p - 2)a)  + M + b. (12b)  

In periodic orbits of the type (12a), all points X t , . . . ,  Xp decrease successively by 
an equal amount  a. This is also true for the ( p - 1) first points in orbits of the second 
type (12b), but the last point then decreases by a smaller amount comprised between 
a and ( M - 1 ) / b .  

We can now determine the domain of existence of the successive 7r(p) periodic 
modes as a function of  a (Fig. 12). For fixed values of M and b, combining eqns 
(11) and (12), one obtains the values of a such that Xp_~ is comprised between XA 
and xB. These values of  a correspond to the domain of existence of a CPO with p 
points per period. In the case considered in Fig. 12, the values of  M and b are such 
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that the maximum value p = 6 is reached in a = 2, for which XA = XB. Then, the CPO 
obtains for a single value of a. This CPO can be reached only from an initial point 
belonging to the cycle, or from an initial value below unity which iterates to M. 

Values o f p  larger than 6 can be obtained for other values of M and b. Furthermore, 
the minimum value o f p  is always two since at large values of a, the trajectory starts 
in M, falls once on the branch x,+~ = x ,  - a ,  before returning to M. As the distance 
between XA and xs increases with a, the successive domains of ¢r(p) modes in Fig. 
12 grow larger with this parameter. Simple periodic patterns zr(1), i.e. non-bursting 
limit cycles, correspond to a stable fixed point of the map and therefore appear in 
the piecewise linear map only when b < 1. 

The decrease in the number of points per period following an increase in a 
corresponds to the decrease in the number of spikes per period observed in the 
three-dimensional system for values of ks above homoclinic tangency when k~ or e 
are raised, given that a increases with both parameters (see sections 3 and 4). 

(B) O R I G I N  O F  C O M P L E X  P A T T E R N S  O F  B U R S T I N G  ¢r(p, i) B E T W E E N  r r (p )  

A N D  r r ( p + l )  M O D E S  

A conspicuous feature of  the diagram of Fig. 12 is that the domains of  existence 
of periodic 7r(p) modes are not contiguous. Tomita & Tsuda (1980) found a similar 
situation in their interpretation of the experiments on complex oscillations and 
chaos in the Belousov-Zhabotinsky reaction. These authors showed on a piecewise 
linear map that the periodic bursting modes rr(p) and r r (p+  1) are separated by 
modes characterized by a periodic or random alternance between p and p + 1 spikes. 
The situation encountered here is different. How a continuous increase of the 
parameter a leads from a periodic regime or(p+ 1) to 7r(p) is the next step of our 
investigation. 

Upon increasing a the following patterns are successively observed by numerical 
iteration of  the map (4) 

~ ( p + l ) , x ,  Tr(p, 2),X, zr(p, 3 ) , . . . ,X ,  z r (p ,p -1) ,x ,  Tr(p,p),zr(p). (13) 

In the sequence (13), ¢r(p, i) represents a periodic pattern formed by p decreasing 
values of x starting from M, followed by i distinct, decreasing values, starting from 
a new maximum value of  x smaller than M, whereas X stands for more complex 
orbits of  longer period (see section 5(c) below). 

The ¢r(p) periodic mode disappears upon a decrease in a because the abscissa 
of the last point of the orbit, Xp moves from the left to the right of  xs. Then, the 
next point xp+~ is slightly lower than M. As a consequence, xp+p will be lower than 
xa. Thus, as the 1r(p) periodic pattern disappears, a new periodic mode l r (p ,p)  
appears: ¢r(p) doubles its period upon a decrease in a. The two successive sequences 
of p points differ by the location of these points on the map. An example of such 
behaviour in the differential system (1) is shown in Fig. 4(d) for a ¢r(4, 4) bursting 
pattern; the associated map in Fig. 10(c) indicates that the slight differences in the 
location of  the points on the map correspond to slight differences in the amplitude 
of  ~ during oscillations. This phenomenon yields time-series reminiscent of the 
period-doubling phenomenon described by Feigenbaum (1978). However, the two 
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p h e n o m e n a  should  be distinguished, since no further  per iod-doubl ing  occurs in the 
piecewise l inear map upon  a further decrease in a. It will be shown below in the 
analysis o f  more  complex  CPOs that the passage f rom 7r(p) to 7r(p, p) corresponds  
to the addi t ion o f  p points  to a simpler orbit rather than to a per iod-doubl ing  
bifurcation.  

Further  unders tand ing  of  the origin of  the complex  transit ion (13) can be gained 
f rom the d iagram presented in Fig. 13. There, for the fixed values b =  5 and M = 11 
considered in Fig. 12, we have plotted as a funct ion o f  a, the significant features o f  
the piecewise linear map  

(i) x = XA and x = x~, the abscissas which limit the domain  (shaded area) in 
which the points  iterate in two steps towards  M;  also indicated is x = 1, i.e. the 
point  to which XA and xB both iterate; 

(ii) x = m, the abscissa o f  the min imum of  the map,  and its iterate, x = m - a  
(dashed lines); rn - a is the lowest value o f x  that  can be reached in the course of  time. 

Accord ing  to eqns (12), we then plot as a funct ion o f  a, the straight lines (dotted 
or  solid) x~ = M, x2 = M - a , . . . ,  xp = M - ( p - 1 ) a . . .  which cor respond  to the p first 
points o f  a trajectory starting in M. To comprehend  the dynamics  o f  the system, 
we may draw a vertical line cor responding  to a given value o f  a. The points where 
this line intersects the lines x l , . . . ,  xp, are the successive values o f  x decreasing on 
the right part  o f  the map,  when starting f rom x~ = M. Of  impor tance  is the fact that  

(6) (5) (4,3) (4) (3,1l (3,2) (3,3) (3) 

M xl  
J ' : :  i~ . . . . . . . . . . . . . . . . . . .  . . . . . .  "X, 2 ~11 . . . . . . . . . . .  / X 4 +  1 - ~  

10 

-::.;... "-...x3 . . . . . .  ....._ : / 
, . - ,  " ,  " - . .  - - ~ .  . 

, : : : : "  ...... / 
• . . . .  ~. . .  ~ . . .  . ~ ~  
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F I G  13 Bi furcat ion diagram for  the piecewise l inear map (eqns (4)) as a funct ion o f  parameter a, 
for h = 5 and M = 11 Shown as a funct ion o f  a are the first point  x, = M and its successive iterates x~ 
given by eqns (4c) or (4b) depending on whether xi_ t falls below m (dotted lines). Also shown as a 
function of a are the minimum, x = m, and the point to which it iterates, x = m - a  (dashed lines). A 
simple or complex CPO occurs as soon as a point in a trajectory originating from M enters the dashed 
area between the lines x = xA and x = x 8 which corresponds to the domain of points iterating in two 
steps towards M (see text for details). The segments corresponding to the successive points of a CPO 
are represented by heavy lines. As in Fig. 12, the CPO ~r(6) (heavy dots) occurs in a =2.  The diagram 
illustrates the transition from ~'(5) to ~r(4) and from rr(4) to Ir(3). The procedure explained in the text, 
shows that between ~r(5) and ~r(4) there exist the more complex periodic patterns Ir(4, 1), 7r(4, 2), 1r(4, 3) 
and ~'(4, 4). Some of the simple and complex CPOs are indicated on top of the figure, for particular 
values of a. 
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each point whose abscissa is comprised between x A and xo will have an o rd ina te - -  
corresponding to the next i tera te--comprised between ( m - a )  and 1. These next 
points having abscissas lower than one will automatically iterate towards x = M and 
will thereby complete a periodic orbit of  the CPO type. The locus of  existence of  
the ~- (p+ 1) CPO appears therefore in Fig. 13 as the range of a values for which 
the straight line xp = M - (p  - 1)a passes through the dashed area situated between 
XA and xn. Over this range of a values, all xp lines are drawn as solid lines to indicate 
the existence of a CPO (each of the x l , .  • . ,  xp points indeed belongs to the periodic 
orbit). A few examples of  such CPOs of the type ~r(p) or zr(p, i) have been indicated 
on the top of  Fig. 13, for particular values of  a. 

The two different types of  periodic orbit, corresponding to (12a) and (12b) are 
encountered successively when increasing a: the CPO (12a) lasts as long as the line 
corresponding to xp, i.e., xp = M - ( p -  1)a is situated above x = m. The next point 
is given by Xp÷l = x p - a .  Upon increasing a, this point moves downwards on the 
next line corresponding to xp÷l, until it reaches the minimum of the map, m - a ,  as 
xp arrives in m. 

When xp is located below m and above unity (as soon as xp = 1, the new periodic 
mode 7r(p) appears) ,  the next iterate takes place on the central part of  the map. 
Upon a further increase in a, this point, given by eqn (12b) as Xp+~= 
- b [ M - ( p - 1 ) a ] + M + b ,  moves upwards along a line of  slope b ( p - 1 ) .  This line 
of  xp+~ values starts in xp+j = m - a  for the value of  a for which xp = m, and arrives 
in xp÷~ = M for the value of a for which xp = 1. In Fig. 13, an example of  such line 
(marked x4+t) is shown for the transition from zr(5) to ~r(4). For a values such that 
xp+~ is situated on that line, below x = 1 (xp is then comprised between XA and m), 
the simple CPO z r (p+  1) continues to obtain, obeying eqn (12b). As the line escapes 
the domain bounded by xa and xB (shaded area), when xp+~ > 1, the 7r (p+ 1) mode 
disappears and complex modes of  behaviour (denoted X in (13)) are observed. 

As a further increases, the point xp÷~ (exemplified by the line x4+1 in Fig. 13) 
continues to move upwards along the same line and is now located above one. 
Finally, xp+t falls itself between XA and x8 and a new periodic mode, 7r(p, 2), 
appears as xp÷2 (exemplified by the line x4÷2) moves below unity. This periodic 
mode also involves two distinct types of orbits depending on whether the last point 
of  the orbit is given by eqn (4b) (XA < Xp+~ < rn) or (4c) (m < xp+~ < xn). This mode 
disappears when a increases, because xp+~ becomes larger than xB, so that xp+2 = 
xv+~-a moves above unity. 

Upon further increase in a, xp÷2 moves upwards, and falls in turn in the dashed 
area bounded by XA and xB. Then, a new CPO appears,  denoted 7r(p, 3). The 
mechanism is repeated until the CPO ~ ( p , p )  appears. The latter mode finally 
disappears as the zr(p) mode is restored, as described above, upon an increase in 
a. In sequence (13), for reasons of  continuity, the pattern ~r(p+ 1) might in fact be 
viewed as a pattern ~r(p, 1). As indicated in Fig. 13 for the patterns ~r(4) and ~(3, 1), 
we may consider that a complex CPO z r ( p , . . . ,  i) transforms formally into 
7 r ( p , . . . ,  i - 1 ,  1) as soon as the last point of  the orbit before the jump to M moves 
from the right part to the central part of  the map (the same distinction applies to 
simple CPOs obeying eqns (12a) or (12b)). The difference between zr(p, i - 1 ,  1) 



F R O M  S I M P L E  T O  C O M P L E X  O S C I L L A T O R Y  B E H A V I O U R  243 

and ~-(p, i) may be tenuous, as the transition occurs in a continuous manner.  Thus 
in Fig. 12, we did not make the distinction between 7r(p, 1) and 7 r ( p + l ) - - e . g .  
between 7r(3, 1) and 7r(4). Similarly, in the differential system it may be difficult to 
distinguish a complex pattern with a group of 6 spikes followed by a single spike 
from a pattern with 7 spikes. 

The "bifurcat ion diagram" of Fig. 13 can be further understood by translating 
the process of  iteration in the map for a fixed value of  a, to the iteration of segments 
of  straight lines representing in Fig. 13 the loci of  successive iterates of the map as 
a function of  a. As pointed out above, a CPO obtains whenever one such segment 
falls in the dashed area comprised between xa and xB. 

A segment of  straight line of  slope - ( p -  1) thus represents as a function of a, 
the locus of  the points xp of orbits starting in xl = M. The part of this segment which 
is situated above x = m evolves towards a next segment of line, locus of  xp+~, of 
slope - ( p ) ,  whereas the part of  the segment of xp values situated between x = m 
and x =  1 iterates to a segment xp+~ of slope - b [ - ( p - 1 ) ] ,  joining x =  m - a  to 
x = M in the same range of a values. The same iteration process can be applied to 
the latter segment in order to generate the loci of  the subsequent iterates of the 
map. The part  of the locus of xp+~ situated above m, evolves to Xp+2 values according 
to eqn (4c), yielding a segment of  slope - b [ - ( p - 1 ) ] - 1 .  On the other hand, the 
part of  the segment of  xp+~ values situated below m, which iterates according to 
eqn (4b), evolves towards a segment of  slope - b { - b [ -  ( p -  1)]}, to which we can 
apply the same reasoning to find the segments of xp+3, xp+4,..., Xp+, values. In 
Fig. 13, we have only plotted the first iteration in the process which displays explicitly 
the succession of complex CPOs in sequence (13), for the transition from 7r(5) to 
~'(4) and from 7r(4) to ~(3). 

The part  of  a segment of  solution of a given slope s, situated below m, is mapped  
by eqn (4b) to a segment of  steeper (since [b[> 1) but inverted slope, -bs .  This 
process yields the locus of  the next point in a complex CPO. Each time this process 
applies, an additional excursion to higher ( < M )  x values occurs; when the corre- 
sponding segment is comprised between xA and xB, such reinjection gives rise to a 
complex periodic orbit characterized by an additional index (i , j , . . .)  in the CPO. 
As the slope of these segments of  iterates given by eqn (4b) rises geometrically as 
( - b ) "  with the number  n of reinjections, the domain of a values for which these 
segments fall between xa and x~- -and  hence the domain of existence of very 
complex CPOs--shr inks  exponentially. The parameter  b thus governs the rate of  
shrinking of  the domains of  existence of very complex CPOs. As b increases, the 
very complex patterns become more difficult to observe. 

(C)  H I G H L Y  C O M P L E X  P A T T E R N S  O F  B U R S T I N G  " n ' ( p , i , j . . . )  A N D  S E L F - S I M I L A R I T Y  

The sequence (13) for the transitions encountered between ~r(p) and 7 r ( p + l )  
can be analyzed in further detail. Between ~-(p, i) and ~r(p, i + l ) ,  the reasoning 
outlined above shows that, upon an increase in a, there obtains a sequence (14) 

~ ( p , i ) , x , ~ ( p , i , p ) , x , ~ r ( p , i , p - 1 ) , X , . . . , ~ ( p , i ,  2) ,x ,~r(p, i+l) .  (14) 
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Sequence (14) resembles sequence (13) as the same process of mapping of a segment 
has been utilized to find the next iterate, as well as the domains of existence of 
complex CPOs. However, the order in which the successive periodic modes are 
encountered is inverted due to the multiplication of the slope of the segment Xp+l 
by -b .  The transition to the mode ~r(p, i, p), resulting from the addition of p points 
to the mode zr(p, i) is equivalent, at this level of complexity, to the transition from 
7r(p) to 7r(p, p) in (13). The phenomenon should henceforth be distinguished from 
a period-doubling bifurcation, since at the level of (14) such a bifurcation should 
yield a transition from zr(p, i) to ~-(p, i, p, i). 

The transitions between ~r(p) and zr(p,p), and between zr(p, i) and zr(p, i, p) 
differ from each other in another respect. The geometrical properties of the map 
are such that, as explained above, the ~r(p) mode transforms directly into zr(p, p) 
as a is decreased. On the contrary, at higher degrees of complexity of the CPOs, 
due to the additional excursions on the central part of the map, the properties 
allowing for the direct transition between ~r(p) and or(p, p) no longer hold. Con- 
sequently, very complex orbits denoted by X are found between r r ( p , . . . ,  i) and 
7r (p , . . . ,  i, p) as indicated in sequences (14) and (15). 

We show in Fig. 14(a) the sequence of CPOs denoted a-g, obtained by numerical 
iteration of the map (4) (with b = 7  and M---11), for the passage from zr(6,2) (a) 
to 7r(6, 3) (g). The CPOs obtained at this level of resolution for a obey sequence 
(14). Figure 14(b) represents an enlargement of a detail of Fig. 14(a) revealing the 
structure of  the complex orbits X comprised between the CPOs r(6 ,  2, 5) (c) and 
Ir(6, 2, 4) (d). This shows that a cloud of points (X) in Fig. 14(a) resolves into a set 
of CPOs with an additional index; these orbits, denoted i-m, are themselves separ- 
ated by bands of even more complex CPOs (X) which will be resolved in a similar 
manner upon further magnification. The comparison of the two figures demonstrates 
the self-similarity properties of the sequence of CPOs: the level of complexity is 
higher in Fig. 14(b), but the transition between periodic orbits in the two figures is 
governed by the same rule. The general sequence of CPOs is given by either (15a) 
or (15b) depending on whether the number of indices in the CPO zr(p, i, . . . .  j, n) 
is odd or even, respectively 

~'(p, i , . . .  ,J), X, 7r(p, i , . . .  ,J,P),X, zr(p, i , . . .  , j , p - 1 ) , X , . . .  , 

zr(p, i, . . . .  j, 2), X, rr(p, i , . . .  , j +  1) (15a) 

~(p,  i , . . .  , j +  1), X, 7r(p, i , . . .  ,j, 2), X, • - •, rr(p, i , . . .  ,j, p - 1), 'X, 

rr(p, i , . . .  ,J,P),X, rr(p, i , . . .  , j ) .  (15b) 

Notice that sequences (13) and (14) are obtained from the generalized sequences 
(15b) or (15a), respectively, when setting the number of indices equal to two or three. 

In principle the rescaling process illustrated in Figs 14(a), (b) can be applied 
indefinitely so that infinitely complex CPOs may occur in the map, corresponding 
to zr patterns with an infinite number of indices. However, as shown in Figs 14(a), (b), 
and as pointed out in section 5(B) the domain of occurrence of a complex CPO 
decreases markedly as the degree of complexity rises. If n denotes the number of 
indices in the pattern rr(p, i, j , . . . )  the size of the domain of a values corresponding 



F R O M  S I M P L E  T O  C O M P L E X  O S C I L L A T O R Y  B E H A V 1 O U R  245  

(o) 

o b c d e f g 

~ - ,  . . • . . . . . . ,  • .. - . ~ . . .  ; . .... 

' "  .":A, . :, "".; " ...': . . ' . ' . ,  " . . . .~ - .: ~o 
, - . .  : _ , . . :  : , . . ' . . , . . . ,  ._ , ; " ' - :  . . . .  

' ~ i ~ ~  

o 

I ! ! 
1 7 6  1 7 8  1 8 

( b )  
C i ) k L m d 

- - ! ? :  i:i::: ,,o 

_ . . . ~ ~ "  ~. , ~ a . ~ ~  o 
i I i i I 
' 778  1-78 1-782 1 7 8 4  

o 

FIG. 14. Self-similarity in the sequences of  complex bursting patterns in the piecewise linear map. 
The bifurcation diagrams are obtained numerically when iterating eqn (4) with h = 7, M = 11, as a function 
of  a, for the passage from ~'(6, 2) to rr(6, 3) (a) and from ~'(6, 2, 5) to rr(6, 2, 4) (b). (b) represents an 
enlargement of  a small portion of panel (a). The comparison of  the two panels indicates self-similarity 
in structure. At each level of  complexity (i.e. for each additional index in the pattern ~(p, i , j , . . . ) )  the 
direction of  change of  the last index is reverted (see eqns (15a) and (15b)). To construct these diagrams, 
the dynamic  behaviour o f  the map  is determined for 300 increasing values of  a. Starting from the initial 
value x = M, transients are allowed to die out, as the map  is iterated 50 times before the values of  x for 
30 successive steps are plotted. Periodic modes ~'(6,2), zr(6,2,6),  7r(6,2,5), 7r(6,2,4), ~r(6,2,3), 
~r(6, 2, 2) and r ( 6 ,  3) are indicated by a to g in (a) for particular values of  a. Between these modes,  
more complex periodic orbits are obtained for smaller parameter  domains  as shown in (b) where the 
transition from ~'(6, 2, 5) to ~-(6, 2, 4)--i .e.  from c to d in (a ) - - i s  shown to contain the modes  rr(6, 2, 4, 2), 
7r(6,2,4,3) ,  ~'(6, 2, 4, 4), r r (6 ,2 ,4 ,5)  and ~'(6, 2, 4, 6) indicated by i to m for particular values of  a. 
Enlargement of  a band of complex CPOs in (b) would yield a similar picture with even more complex 
periodic orbits. Notice that lines appearing in (a) and (b) result here from numerical iterations rather 
than from analytical expressions as in Fig. 13. 
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to such pattern varies as b-", and therefore rapidly becomes vanishingly small if b 
is large, i.e. if the central part of  the map is steep. As the central part of  the maps 
obtained numerically is very steep (see Fig. 10), we do not expect to find, over wide 
domains of  parameter  values, very complex CPOs in the differential system (1). 
Such solutions do however occur, as illustrated in Fig. 4(e). 

The sequences (15) are only obtained for the piecewise linear map when the left 
part corresponding to jr, in eqn (4) is strictly horizontal. When fl  is not horizontal, 
complex periodic orbits which pass several times on the part of  the map correspond- 
ing to f : ,  where the absolute value of the slope is bigger than one, become unstable 
(see eqn (9)) when the slope off~ is different from zero, provided that they contain 
a sufficient number  of  points on the central part  of  the map. The most complex 
CPOs are destroyed in such conditions and replaced by aperiodic (chaotic) orbits. 

Other non-constrained periodic orbits which do not pass by M can be found 
when the initial point xl in eqn (12) differs from M and lies on the central part of 
the map, f2- These orbits are always unstable in the piecewise linear map. They 
could be stabilized in the case of  a curved nonlinear map similar to the maps 
obtained numerically for system (1) (see Fig. 10), if one point of  the orbit falls 
sufficiently near the minimum of the map,  where the slope is zero. In such a case, 
if a CPO exists for the same parameter  values, one could observe two stable periodic 
orbits in the map. This birhythmicity would correspond to the coexistence between 
two different bursting patterns, in a narrow range of parameter  values. Such 
birhythmic behaviour would differ from that previously described (Decroly & 
Goldbeter,  1982), in which two simple, simultaneously stable limit cycles coexist; 
the latter situation would be associated with the coexistence of two stable fixed 
points in the map (Decroly & Gotdbeter,  1985). 

(D)  A M O R E  R E A L I S T I C  A B S T R A C T  M A P  

When we compare the results obtained for the piecewise linear map with those 
obtained for a map given by a continuous nonlinear curve, some novel features 
appear.  The sequence of period-doubling bifurcations observed for low k, values 
in Fig. 3 cannot be accounted for by the piecewise linear map, since in the latter 
case no period-doubling occurs. 

In Fig. 15, we present a bifurcation diagram obtained for an abstract nonlinear 
map,  which matches more closely the shape of the maps numerically obtained in 
Fig. 10, but still resembles the piecewise linear map given by eqn (4). This map, 
represented by the inset in Fig. 15 obeys eqns (16) 

x,, <- x~: x,,+~ = g~(x,,) = M (16a) 

x, ,>xs:  x n + ~ = g 2 ( x , , ) = [ x 2 - ( A + l ) x , , + B ] / ( x , , - 1 ) ,  (16b) 

where xj is the value of  x such that g,(x~) = M. 
The map  is constructed so as to possess a vertical asymptote  in x = 1 and an 

asymptote of  slope 1, x,+, = x, - A. In such a manner,  the main characteristics of  
the maps numerically obtained by integration of eqns (1) are preserved as in the 
piecewise linear map (A plays here the role of  a in the map (4)), but the central 
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FIG. 15. Bifurcation diagram for the nonlinear map. The diagram is obtained as in Fig. 14, by iterating 
eqns (16) with M = 20 and B = 7 for different values of A. This map (see inset) qualitatively matches the 
maps of Fig. 10. 'l'he bifurcation diagram resembles that established in Fig, 3 for the original system of 
differential equations (1). 

well becomes curved rather than angular. The value of xj, solution of a second 
degree equation is slightly larger than 1 so that the map is continuous, given the 
existence of an asymptote in x = 1. 

As shown in Fig. 15, which is obtained by iterating numerically the map (16), 
upon increasing A successive period-doubling bifurcations leading to chaos occur 
before CPOs are obtained. This can be easily understood, since the minimum of  
the map given by eqn (16b) is locally quadratic. Upon changing the parameter 
values, the dynamical behaviour on the map (16) should undergo a sequence of 
period-doubling bifurcations according to the analysis of Feigenbaum ~ rvo~,~), as 
soon as the slope of  the map becomes smaller than -1  at the fixed point. The 
sequence of  period-doubling bifurcations in the nonlinear map (Fig. 15) matches 
the similar sequence obtained in the three-dimensional system (1) (Figs 2 and 3). 
As in the piecewise linear map (4), it is the horizontal, left part of  the map (16) 
which is responsible for the occurrence of  simple and complex CPOs at larger values 
of  A. This constraint, by imposing an upper bound on the value of x, yields periodic 
trajectories which would otherwise be chaotic. The sequence of CPOs in the nonlinear 
map still obeys the transition rules (15) and, as in the piecewise linear map, bands 
of complex CPOs possess a self-similar structure. 

Figure 15 accounts qualitatively for the bifurcation diagram of Fig. 3 in the range 
of ks values situated above homoclinic tangency; it provides an intuitive link between 
the latter numerical diagram and Fig. 13 which was obtained by means of  an abstract 
piecewise linear map. 

The fact that the map (16) is nonlinear prevents a detailed analytical treatment, 
and therefore justifies the use of  the piecewise linear map. The detailed analysis of 
the latter map allows us to understand qualitatively the sequence of  complex periodic 
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oscillations corresponding to complex bursting patterns in system (1). In particular, 
the analytical bifurcation diagrams of Figs 13 and 14 explain how bursting 
phenomena of the type ~r(p, i,j, . . .) can be obtained. An example of such complex 
CPO in the differential system (1) is shown in Fig. 4(e). The piecewise linear 
approach further explains the transition between different complex patterns of 
bursting, as a function of parameter values. However, the chaotic behaviour as well 
as the sequence of period doubling bifurcations cannot be explained by the piecewise 
linear map given by eqns (4). Such phenomena may be accounted for by nonlinear 
maps such as that obeying eqn (16). 

6. Discussion 

We have presented a qualitative explanation for the generation of complex periodic 
oscillations (bursting) in a multiply regulated biochemical system. Such oscillations 
were first observed by numerical simulations of a set of three ordinary differential 
equations not amenable to detailed analytical treatment. Our analysis of bursting 
rests on successive, complementary approaches which correspond to progressive 
simplification of the original model. It is noteworthy, and somewhat paradoxical, 
that these simplifications in fact allow one to see complex modes of oscillatory 
behaviour not easily perceived in the original system of differential equations. 

The first approach, analogous to that developed by Rinzel (1986) and Rinzel & 
Lee (1986) for the analysis of membrane potential bursting, consists in the separation 
of the three-dimensional dynamics into fast and slow time-scales. The analysis then 
reduces to that of a two-variable system, in which the third variable becomes a 
slowly varying parameter. Such analysis yields bifurcation diagrams for the fast fl-y 
subsystem as a function of the third variable o~ taken as a parameter whose slow 
variation gives rise to bursting. Some of the bifurcation diagrams obtained here 
present a striking resemblance to those obtained by Rinzel (1986) for bursting of 
membrane potential in nerve cells and in pancreatic fl-cells, and by Martiel & 
Goldbeter (1986) for bursting and birhythmicity in a model for cAMP oscillations 
in Dictyostelium ceils. 

The two-variable analysis shows how complex oscillations develop from simple 
periodic behaviour upon variation of a control parameter (see Fig. 4). It also accounts 
for the occurrence of different types of bursting, namely, small-amplitude wiggles 
at the top of slower, large-amplitude oscillations (Fig. 4(b)), or groups of large- 
amplitude spikes separated periodically by quiescent phases (Fig. 4(c)). Both types 
of bursting are known to occur in chemical and biological systems. Moreover, the 
separation between fast and slow subsystems sheds light on the origin of "inverse 
parabolic" bursting in which the time interval between successive spikes passes 
through a maximum. This behaviour occurs just before the onset of a homoclinic 
orbit in the fast subsystem. 

The next step in the reduction consists in obtaining a one-dimensional return 
map that reflects the behaviour of the differential system. The analysis of a related 
piecewise linear map then allows us to understand the complex sequence of bifurca- 
tions leading from a periodic pattern with p spikes to one with p+  1 spikes per 
period. This transition from ~r(p) to 7r(p + 1) involves the passage through domains 
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of more complex periodic regimes: ~'(p, p), 7r(p, p - 1) . . . .  , zr(p, 2), 7r(p, 1), inter- 
spersed with even more complex periodic oscillations in a self-similar manner (see 
Figs 14(a), (b)). Another instance of self-similarity was previously described in the 
present model, for the fractal structure of the attraction basins in the case of the 
coexistence between two stable limit cycles separated by unstable chaos (Decroly 
& Goldbeter, 1984b, 1985). 

The occurrence and stability of constrained periodic orbits (CPOs) in the piecewise 
linear map arise from the fact that the left segment of the map is horizontal. Upon 
slight deviation from horizontality the more complex CPOs disappear and give way 
to chaos. Another form of chaos preceded by period-doubling bifurcations is 
obtained in a nonlinear map which more closely resembles the map associated with 
the time evolution of the differential system. The sequence of complex CPOs is 
given by the same rules as in the piecewise linear map, and also possesses properties 
of self-similarity. The behaviour of the nonlinear map thus accounts for both the 
sequence of complex bursting patterns and for the chaotic dynamics observed in 
the model. 

The complex patterns of oscillations of the type ~r(p, i,j, . . . )  obtained in the 
piecewise linear map account for--and explain the origin of---similar bursting 
oscillations observed in the differential system (see e.g., Fig. 4(e)). Such patterns 
did not appear in the sequence analyzed by Rinzel (1986), who described periodic 
bursting with 1, 2 , . . .  n, n + 1 , . . .  spikes, but did not investigate in detail the transition 
between these bursting patterns. 

On the other hand, Tomita & Tsuda (1980) have used the reduction to a one- 
dimensional map to understand the sequence of bursting oscillations observed 
experimentally in the Belousov-Zhabotinsky reaction by Hudson et al. (1979). They 
depicted a transition which shares some similarities with the sequence described 
here, as it also implies a transition between periodic modes ~(p) and ~r(p+l). 
There, however, the transition is characterized by modes ofbehaviour corresponding 
to a periodic or chaotic alternance between p and p + 1 spikes. 

The predictions obtained by the one-dimensional analysis remain qualitative as 
there is no precise relation between the parameters of the model and those of the 
maps. Nonetheless, the analysis of one-dimensional maps has already explained 
the structure of the attraction basins when system (1) admits more than one stable 
periodic attractor (Decroly & Goldbeter, 1985). Such analysis, supplemented by 
that of a piecewise linear map, have allowed us here to understand the sequence 
of complex periodic oscillations observed by numerical integration of the enzymatic 
model, as well as to explain the existence of very complex patterns of bursting 
oscillations in some ranges of parameter values. 

Bursting neurons, pancreatic /3-cells, Dictyostelium amoebae, and the present 
biochemical system share, in spite of their diversity, common properties of temporal 
organization. Although the time evolution of these systems is governed by markedly 
different kinetic equations, the bifurcation diagrams obtained by separating their 
dynamics into two time scales indicate a common origin for bursting behaviour. In 
a similar manner, the sequence of bursting patterns obtained here upon variation 
of a control parameter may hold for a variety of dynamical systems, as the shape 
of the maps investigated here may well arise in other bursting systems. Of particular 
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significance is the fact that Chay and Rinzel (1985) have obtained a one-dimensional 
map similar to the one obtained here, but inverted in shape, in their study of bursting 
in a model for the pancreatic fl-cell. The present analysis may thus be of  general 
relevance to bursting phenomena  in chemistry and biology, even if the differential 
equations considered specifically relate to enzyme kinetics. 

We wish to thank P. Gaspard, J. L. Martiel, G. Nicolis, J. Rinzel and X. J. Wang for fruitful 
discussions, and E. J. Doedel for communicating to us the program AUTO. One of the authors 
(O.D.) is Aspirant du Fonds National Beige de la Recherche Scientifique (F.N.R.S.). 
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