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ABSTRACT We analyze on a model biochemical system the
effect of a coupling between two instability-generating mecha-
nisms. The system considered is that of two allosteric enzymes
coupled in series and activated by their respective products. In
addition to simple periodic oscillations, the system can exhibit a
variety of new modes of dynamic behavior: coexistence between
two stable periodic regimes (birhythmicity), random oscillations
(chaos), and coexistence of a stable periodic regime with a stable
steady state (hard excitation) or with chaos. The relationship be-
tween these patterns of temporal self-organization is analyzed as
a function of the control parameters of the model. Chaos and bi-
rhythmicity appear to be rare events in comparison with simple
periodic behavior. We discuss the relevance of these results with
respect to the regularity of most biological rhythms.

Rhythmic behavior is a property of living systems that is en-
countered at all levels of biological organization (1). Most bio-
logical oscillations have a stable period and amplitude. From
a thermodynamic point ofview, such oscillations represent tem-
poral dissipative structures, which occur in the form of a limit
cycle around a nonequilibrium unstable steady state (2). Thus,
finding the mechanism of periodic behavior largely reduces to
finding the mechanism producing instability. A question arises
as to what happens when two such instability-generating mech-
anisms are operating in the same system? We show here on a
model biochemical system that the variety of possible types of
dynamic behavior is then greatly increased.
Among these behavioral modes, one should single out for

their rareness and potential implications the coexistence under
the same conditions of two stable periodic regimes and the oc-
currence of chaos. For other parameter values, the system
shows simple or complex periodic oscillations of the limit-cycle
type and coexistence of a stable limit cycle with either a stable
steady state or chaos. Evolution to chaos appears to be a uni-
versal way by which periodic behavior looses its regularity and
becomes impredictable, although governed by deterministic
laws (3-5). The latter phenomenon occurs in physics (6) and
chemistry (7) and has been associated with pathological condi-
tions in certain physiological systems (8).

The construction of stability and bifurcation diagrams sheds
light on the origin of these patterns of temporal self-organiza-
tion and on the way in which they are interrelated. We obtain
the conditions in which the various modes of behavior occur as
a function of the control parameters of the model and discuss
the likelihood ofchaos in comparison with regular periodicities.

MODEL AND KINETIC EQUATIONS
Among oscillations in biology, enzymatic periodicities are those
which are the best understood at the molecular level (9-11).

These oscillations, which have a period of several minutes, are
of interest both for their role in metabolic pathways and as gen-
eral models for biological rhythms. The best known examples
are glycolytic oscillations in yeast (12, 13) and muscle (14) and
the periodic synthesis of cAMP during the aggregation of the
slime mold Dictyostelium discoideum (15). The mechanism of
instability that generates these periodicities is based on the
positive feedback exerted by a reaction product on phosphofruc-
tokinase and adenylate cyclase, respectively (10). To investigate
the new types of behavior that may result from the interplay
between two instability mechanisms, we analyze a sequence of
enzymatic reactions that comprises two positive feedback loops
coupled in series (Eq. 1).
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Substrate S is injected or synthesized at a constant rate v; its
transformation is catalyzed by an allosteric enzyme El, which
is activated by its product P1; a second allosteric enzyme E2 uses
P1 as substrate and is activated by its product P2; k, is the ap-
parent first-order rate constant for removal of P2. This model
represents an extension of those previously studied for glycolyt-
ic (16, 17) and cAMP (18, 19) oscillations. The latter models,
based on a single positive feedback, were only capable of evolv-
ing either towards a stable steady state or to a stable monoperi-
odic regime.
We assume that enzymes E1 and E2 obey the concerted tran-

sition model of Monod et al. (20). The time evolution of the
metabolite concentrations is then governed by the three ordi-
nary differential Eqs. 2.

da/dt = (v/Kml) - ale
d13/dt = qlo1F) - o271
d'y/dt = q2cT277 - ksy [2]

with
(D = a(l + a)(1 + 0)2/[L1 + (1 + a)2(1 + f3)2]

and
= ,3(1 + d/3)(1 + 'y)2/[L2 + (1 + dp)2(1 + y)2] [3]

Here, a, /3, and y denote the concentrations of S, Pi, and P2
divided, respectively, by the Michaelis constant of E1 (i.e.,
Kml) and by the dissociation constants of Pi for El, Kpl, and of
P2 for E2, Kp2. Moreover, v denotes the constant input of sub-

Abbreviations: LCL, LC2, and LC3, limit cycles 1, 2, and 3,
respectively.
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strate; al and r2 are the maximum as
E2, divided through Km. and K.2, rE
and q2 = Kpl/Kp2; k, is the apparen
for removal ofP2; L1 and L2 are the all
E2 (20); d = Kpl/Km2, where Km2 is
E2 for its substrate P1.

Eqs. 3 reflect the assumption thc
both dimers, with exclusive binding
tive conformational state (20). The
obtained by further assuming a quasi-
enzymatic forms (16). Finally, we rest
of a spatially homogeneous system,
experiments on oscillations under c
colysis or cAMP synthesis (12-15).

RESULTS
Eqs. 2 admit a single steady-state sol
unstable, depending on parameter N

havioral modes made possible by the
itive feedback is illustrated by the b
1. Here, we have plotted as a fund
concentration of substrate (a0) and th
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Ativities of enzymes E1 and as measured by the maximum in a over a cycle (aM). The sta-
zspectively; q1 = Kml/Kpl bility properties of the steady state were determined by linear
it first-order rate constant stability analysis, whereas stable and unstable oscillatory re-
losteric constants ofEland gimes were obtained by numerical simulations. The different
the Michaelis constant of types of behavior observed upon varying ks are summarized in

Table 1, and are discussed below.
at enzymes E1 and E2 are Limit-Cycle Oscillations. At both extremes-i.e., at low and
of ligands to the more ac- high values of k,-the system displays simple oscillations of the
kinetic Eqs. 2 have been limit-cycle type for the particular set of parameter values con-
-steady state for the various sidered (see Fig. 2a). This observation can be explained by not-
:rict our analysis to the case ing that for k,, - 0 (i.e., y -m oo) and k8 -X oc (i.e., y -3 0), the
which corresponds to the equations for a and /3, in the limit of negligible d values (which
ontinuous stirring in gly- limit will be considered here), reduce to those previously stud-

ied for glycolytic oscillations (16, 17), with an apparent first-
order rate constant for removal of P1 equal to oa2 and o2/(L2
+ 1), respectively. Linear stability analysis and phase-plane

lution that can be stable or analysis of the reduced (a, P3) system show that the steady state
values. The variety of be- is unstable for these two values of the removal constant. The

aluesThevriety of be- bifurcation diagram of Fig. 1 shows that these two asymptoticpresence of a second pos- r -2 1ircatondamso Fig-. regimes are reached rapidly, when k8 goes below 10- sec-1 or

L rc71ionokt seya above 10 sec'. As both regimes have a common origin, we shalltionofks the steady-stae.refer to them as limit cycle 1 (LC1).ie amplitude of oscillations Hard Excitation. When k8 is increased from a low initial
value, the system reaches a critical point at which the steady
state becomes stable. As LC1 keeps its stability, there occurs
a phenomenon ofhard excitation (21) (see Fig. 2b): the system,
starting from the steady state, returns to it upon slight pertur-
bation but evolves to a stable periodic regime when the per-
turbation exceeds a threshold.

Birhythmicity. At further increase in k8, the steady state be-
comes unstable, and a new stable periodic solution appears
(limit cycle 2, LC2). As the LC1 still exists (see Fig. 1), the sys-

' F/ ////temcan now choose between two stable periodic regimes, de-
pending on initial conditions (Fig. 3a). We shall refer to this

L______ ___ _ unusual phenomenon as "birhythmicity." For the same param-
eter values, the two types of rhythmic behavior differ signifi-

1 10 100 cantly in period and amplitude and take place around different
mean substrate levels. Each stable limit cycle possesses its own
basin of attraction, defined as the set of initial conditions from

50 which the system evolves to the particular periodic solution.
Between the two stable limit cycles, there is an unstable

48 cycle. When the system departs from an initial condition close
C3g ...... to the separatrix ofthe two basins of attraction, it may stay tran-

46

44

42

Table 1. Dynamic behavior of the regulated enzymatic system as
a function of k8
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FIG. 1. (Upper) Bifurcation diagram as a function of the parameter
k8. The steady-state substrate concentration ao is shown (thin line)
together with the maximum substrate value aM during oscillations
(thick line). Stable and unstable solutions are represented by solid and
dashed lines, respectively; LC1, LC2, and LC3 are stable periodic so-
lutions. The shaded area between k8 = 1.99 sec-' and 2.034 sec- (seen
more readily in lower diagrams) represents the domain of chaos. The
hatched area between k8 = 2.034 seci1 and 12.8 sec' represents a
domain of complex periodic oscillations in which successive, decreas-
ing maxima in a are observed over a period; the upper solid line bound-
ing this domain represents the largest of these maxima. (Lower) Suc-
cessive enlargements of the boxed domains in which hard excitation,
birhythmicity, and chaos occur. Parameter values are: v/K,1 = 0.45
sec- 1 al = 2= 10 sec'1, q, = 50, q2 = 0.02, LI = 5 x 108, and L2
= 100.

Parameter range, sec1

k, ' 0.792
0.792 <k8s 1.584

1.584 < k8i 1.82
1.82 <k, - 1.974
1.974 < k8s 1.99

1.99 < k8 ' 2.034
2.034 < k8 ' 12.8

k8> 12.8

Observed behavior
One limit cycle
One limit cycle and one stable

steady state (hard excitation)
'Two limit cycles (birhythmicity)
One limit cycle
Two limit cycles, one of which

undergoes a sequence of
period doubling leading to
chaos

Aperiodic oscillations (chaos)
Complex periodic oscillations

(including bursting)
One limit cycle

Parameter values are those of Fig. 1. Only the asymptotic regimes
are indicated; this eliminates unstable periodic trajectories. The vari-
ation in k8 considered could result from a continuous change in enzyme
activity; a similar increase in phosphodiesterase and adenylate cyclase
activity has been associated with behavioral transitions during de-
velopment of the cAMP signaling system in D. discoideum (19).
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FIG. 2. Differentbehavioral modes ofthe regulated enzymatic sys-
tem as a function of parameter k8. Only the time evolution of the sub-
strate concentration a is shown. (a) Simple periodic oscillations, k.
= 0.6 sec'1. (b) Hard excitation, k8 = 1.2 sec'1. (c) Chaos, k. = 2 sec'.
(d) Complex periodic oscillations, k8 = 2.032 sec-1. The curves are ob-
tained by numerical integration of Eqs. 2 for the parameter values of
Fig. 1. These are physiologically acceptable values, close to those used
in modeling glycolytic and cAMP oscillations (16-18).

siently on the unstable periodic trajectory and then be attracted
by one of the two stable cycles as shown in Fig. 3a.

Period Doubling and Chaos. Upon further increase in pa-
rameter k., only one stable limit cycle (LC2) at first persists.
Then, as shown in the enlargements in Fig. 1, there is a new
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hysteresis loop between two oscillatory regimes, LC2 and limit
cycle 3 (LC3). LC3 appears in ks = 1.974 sec', whereas LC2
disappears in k, = 2 sec-1. A particularity of this birhythmic
pattern is that the oscillatory regime LC3 undergoes a bifur-
cation beyond which the monoperiodic evolution of the sub-
strate becomes unstable, and a period-2 oscillation, reflected
by alternating higher and lower maxima, is observed. Period
doubling often occurs along a sequence of successive bifurca-
tions leading to trajectories ofperiod 2, 4, 8, .. ., and eventually
to a trajectory ofperiod 2x (3, 22). The latter aperiodic oscillatory
regime is referred to as "chaos" or "turbulence" (see ref. 7 for
a recent account). Period doubling occurs in the present model
from k8 = 1.982 secE on, and chaos is reached in ks = 1.99 sec'
(see Fig. 2c). A sequence of period-doubling bifurcations is ob-
tained for parameter v as for k,, and preliminary results suggest
that in both cases the transition to chaos obeys Feigenbaum's
route to turbulence (22). That the behavior shown in Fig. 2c is
chaotic has been established by a variety of diagnostics, such
as sensitivity to initial conditions, Poincare sections, return
maps, and power-spectrum analysis. These results and the de-
tailed transition to chaos will be discussed in a forthcoming
publication.

Thus, between ks = 1.974 sect and 2 sect, we observe the
coexistence of a stable limit cycle (LC2) with, successively, a
stable limit cycle of period 1, 2, 4, 8, ..., and chaos. In analogy
with Fig. 3a, we show in Fig. 3b the passage from an unstable
limit cycle to either chaos (upper curve) or a stable limit cycle
(lower curve) for slightly different initial conditions.

Chaos is associated with the existence of a strange attractor
(5, 23) in the phase space (a, /3, y) (Fig. 4a). The trajectory fol-
lowed by the system is trapped by the attractor and wanders
on it, on closely related paths, without ever passing through the
same point. Hence, the elements of both randomness and pe-
riodicity which characterize this behavior.
From k. = 2.026 secE , the system undergoes large excur-

sions in the phase space (Fig. 4b), corresponding to increased
maxima in a during oscillations (Fig. 2d), with superimposed
bursts in / and y. Between ks = 2.026 sec' and k8 = 2.034
secE1, the trajectory associated with the large excursions passes
once or several times through a small loop, which is a vestige
of the strange attractor of Fig. 4a. The trajectory may then be
periodic (as in Fig. 4b) or chaotic, depending on the value of
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FIG. 3. Coexistence, for the same set of parameter values, of two stable periodic regimes (birhythmicity) (a) and of a stable periodic regime and
chaos (b). The curves are obtained for the parameter values of Fig. 1, with k8 = 1.8 sec-' for a and 1.99 sec-' for b. In both cases, an unstable periodic
trajectory is followed transiently by the system as it evolves towards either one of the asymptotic regimes. Initial conditions in a are: (8 = 250, y
= 0.25, upper-curve, a = 32.02223, and lower-curve a = 32.02222; initial conditions in b are:. = 188.8, y = 0.3367, upper curve a = 29.19988,
and lower curve a =- 29.19989. The periods of the two.stable periodic regimes in a are 79 sec and 44 sec, respectively.
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FIG. 4. Trajectories in the phase space (a, (3, y) associated with
chaos (a) and with complex periodic behavior (b). The curves corre-
spond to the substrate evolution depicted in Fig. 2 c and d, respectively,
and have been obtained by integration of the kinetic equations from
t = 0-5,000 sec. The ranges of variation of a, /3, and y in a are a =
28.44-50.6, p = 50.05-351.1, and y = 0.05-2.28 and in b are a =
28.18-190.5, 3 = 0.14-604.0, and y = 0.00014-8.8.

ks. In the latter case, the data suggest a phenomenon of inter-
mittency (24).

10
Stable

g 1 _ Unstable

Simple periodic oscillations

Complex Periodic Oscillations. As ks increases beyond 2.034
see', the trajectory does not pass anymore through the small
loop and remains periodic, although the oscillations exhibit sev-
eral bursts in 03 and y over a period. Bursts become less and
less noticeable as k8 approaches 12 secE; finally, a simple pe-
riodic regime of oscillations is restored in ks = 12.8 seet.
The large-amplitude oscillations that end the domain of chaos
abruptly reach a plateau in the maximum of a (see Fig. 1). It
is intriguing that this plateau in the amplitude of LC3 seems to
extrapolate to the amplitude ofLC1 for ks = 1 see'. That LC1
is recovered upon cessation of bursting, at large values of k.,
has been demonstrated above.

Behavior in the v-k8 Parameter Space. To gain further in-
sight on the relative occurrence of each of the above phenom-
ena, we have determined the behavior of the system in the pa-
rameter space v-ks (Fig. 5). Three main conclusions emerge
from this study. (i) The bifurcation sequence of Fig. 1 is obtained
in a restricted range of v values. Some behavioral modes dis-
appear when v moves outside this range. (ii) The domain of
chaos is located near the domains ofhard excitation and birhyth-
micity and follows a sequence of period-doubling bifurcations.
Moreover, it precedes a domain of large-amplitude, complex
periodic oscillations. (iii) As to the frequencies of occurrence of
the different behavioral modes, the data of Fig. 5 indicate that
chaos and birhythmicity are relatively rare events in comparison
with complex periodic oscillations and hard excitation, which
are themselves much less frequent than simple periodic
oscillations.

DISCUSSION
The present results show that when two instability-generating
mechanisms are coupled in series, the continuous variation in
a parameter can give rise to a sequence ofwidely different self-
organization phenomena such as simple and complex periodic
oscillations of the limit-cycle type, random oscillations (chaos),
and coexistence of one stable limit cycle with either a stable
steady state (hard excitation), a second stable limit cycle (bi-
rhythmicity), or chaos.

Although in principle most (if not all) of the above behavioral
modes can be obtained with a single instability-generating
mechanism, the analysis of models based on a single feedback
loop suggests that this is not a typical situation. Indeed, the
models previously studied for glycolytic and cAMP oscillations
only showed the existence of simple periodic behavior or mul-
tiple steady states (16-19). Hard excitation, birhythmicity,

k., sec1

FIG. 5. Behavioral domains in the v-k8 parameter space. Stable and unstable refer to the steady state. The various behavioral domains have
been determined by numerical simulations.
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chaos, and complex periodic oscillations clearly originate here
from the interplay between the two positive feedback processes,
which are both potential sources of oscillatory behavior. How
the two instability-generating mechanisms precisely cooperate
to induce the above phenomena remains to be determined.
Another question to be investigated is whether or not similar
phenomena can arise from the coupling between positive and
negative feedback processes-a situation which is more prob-
able from a physiological point of view.

Some of the behavioral modes described above have been
experimentally observed. Simple and complex periodic oscil-
lations and chaos have been reported for peroxidase (25) and for
the Belousov-Zhabotinsky reaction (26, 27). The related
Briggs-Rausscher reaction exhibits hard excitation (28). Com-
plex modes of oscillatory behavior have been observed in the
yeast glycolytic system (12, 13), for which evidence for hard
excitation also has been reported (1). The present study suggests
that models comprising more than one regulatory feedback may
provide a unifying mechanism for explaining these phenomena.
Such models also would account automatically for the fact that
simple periodic oscillations are the rhythm most commonly ob-
served in glycolysis because this behavior is also the type of
oscillation most frequently found in the present model.
The phenomenon of birhythmicity, to our knowledge, has

not yet been observed in biological or chemical systems. This
phenomenon would be demonstrated if an oscillatory system,
upon some suprathreshold perturbation, would evolve to a new

oscillatory regime with different period and amplitude. Natu-
rally this demonstration would be of value only if the pertur-
bation needed for the switching would not affect the system's
parameters. The transition to chaos in the Belousov-Zhabotinsky
reaction accompanies, as in the present model, the rapid pas-

sage from a small- to a large-amplitude limit cycle upon variation
of a single parameter (27, 29). As birhythmicity here precedes
this abrupt transition, the above results suggest a search for
multiple limit cycles in the chemical reaction in the immediate
neighborhood of the chaotic domain.
From a theoretical point of view, the coexistence of two sta-

ble periodic regimes has been reported in the modeling of a

sequence of exothermic reactions (30) and of a complex genetic
regulatory circuit (31) and in a problem of nonlinear optics (32).
Tyson, in his study on the coupling in series of two oscillatory
models (33) did not observe birhythmicity but found complex
periodic oscillations. He noted the apparently random character
of some of the solutions, but no attempt was made at the time
to relate them to chaos. As to biochemical systems, we have
recently become aware of a work by Schulmeister and Sel'kov
(34) who obtained complex periodic oscillations in a model of
an oscillating enzyme reaction involving inhibition by a cofactor
and reversible deposition of substrate. The trajectories associ-
ated with these periodicities in the phase plane were referred
to as "folded" limit cycles. The authors reported the coexistence
of two stable limit cycles, simple or folded, in a narrow range

of substrate deposition rates. Birhythmicity and chaos also were
reported for a three-variable, modified Lotka model (35). How-
ever, a detailed characterization of the birhythmic or chaotic
domains in parameter space has not been carried out in these
models.

Birhythmicity requires stringent conditions both on the ki-
netics and on the parameter values. Thus, it is probably less
frequent than its well-known stationary counterpart, bistability,
in which two stable steady states coexist for a given set of ex-

perimental conditions, as demonstrated for several biochemical
systems such as the peroxidase reaction (36). Birhythmicity pro-

vides a new mode of physiological regulation as it allows for a

switch between two periodic regimes upon suitable perturba-

tion. It would be of interest to search for this phenomenon not
only in chemical or metabolic oscillatory systems but also in the
many rhythmic processes occurring in the brain, which arise
precisely from multiple regulatory interactions between neurons.
The remarkable property of chaos is the emergence of ran-

dom behavior in a system subjected to a constant input and
governed by deterministic laws. The present study throws light
on the stringent regulatory prerequisites for the occurrence of
this phenomenon in biological systems. That chaos occurs in a
rather small domain of the parameter space and is much less
frequent than periodic oscillations is satisfactory, in view of the
regularity of most biological rhythms.

We thank Profs. G. Nicolis and I. Prigogine for fruitful discussions.
G.D. is afellow from the Institut pourl'Encouragement de la Recherche
Scientifique dans l'Industrie et l'Agriculture.

1. Winfree, A. T. (1980) The Geometry of Biological Time (Springer,
New York).

2. Nicolis, G. & Prigogine, I. (1977) Self-Organization in Nonequi-
librium Systems (Wiley, New York).

3. May, R. M. (1976) Nature (London) 261, 459-467.
4. Rossler, 0. E. (1979) Ann. N.Y. Acad. Sci. 316, 376-392.
5. Shaw, R. (1981) Z. Naturforsch. Teil A 36, 80-112.
6. Haken, H., ed. (1981) in Chaos and Order in Nature, Series in

Synergetics (Springer, Berlin), Vol. 11.
7. Vidal, C. & Pacault, A., eds. (1981) in Nonlinear Phenomena in

Chemical Dynamics, Series in Synergetics (Springer, Berlin),
Vol. 12.

8. Glass, L. & Mackey, M. C. (1979) Ann. N.Y. Acad. Sci. 316, 214-
235.

9. Hess, B. & Boiteux, A. (1971) Annu. Rev. Biochem. 40, 237-258.
10. Goldbeter, A. & Caplan, S. R. (1976) Annu. Rev. Biophys.

Bioeng. 5, 449-476.
11. Berridge, M. J. & Rapp, P. E. (1979)J. Exp. Biol. 81, 217-279.
12. Hess, B. & Boiteux, A. (1968) in Regulatory Functions of Biolog-

ical Membranes, ed. Jdrnefelt, J. (Elsevier, Amsterdam), pp.
148-162.

13. Pye, E. K. (1969) Can. J. Bot. 47, 271-285.
14. Frenkel, R. (1968) Arch. Biochem. Biophys. 125, 151-156.
15. Gerisch, G. & Wick, U. (1975) Biochem. Biophys. Res. Commun.

65, 364-370.
16. Goldbeter, A. & Lefever, R. (1972) Biophys. J. 12, 1302-1315.
17. Boiteux, A., Goldbeter, A. & Hess, B. (1975) Proc. Natl. Acad.

Sci. USA 72, 3829-3833.
18. Goldbeter, A. & Segel, L. A. (1977) Proc. Natl. Acad. Sci. USA 74,

1543-1547.
19. Goldbeter, A. & Segel, L. A. (1980) Differentiation 17, 127-135.
20. Monod, J., Wyman, J. & Changeux, J. P. (1965)J. Mol. Biol. 12,

88-118.
21. Minorsky, N. (1962) Nonlinear Oscillations (Van Nostrand,

Princeton, NJ).
22. Feigenbaum, M. J. (1980) Los Alamos Sci. 1, 4-27.
23. Ruelle, D. & Takens, F. (1971) Commun. Math. Phys. 20, 167-

192.
24. Pommeau, Y. & Manneville, P. (1980) Physica D 1, 219-226.
25. Olsen, L. F. & Degn, H. (1977) Nature (London) 267, 177-178.
26. Schmitz, R. A., Graziani, K. R. & Hudson, J. L. (1977)J. Chem.

Phys. 67, 3040-3044.
27. Roux, J. C., Rossi, A., Bachelart, S. & Vidal, C. (1981) Physica

D 2, 395-403.
28. De Kepper, P. (1976) C. R. Hebd. Seances Acad. Sci. Ser. C 283,

25-28.
29. Tomita, K. & Tsuda, I. (1979) Phys. Lett. A 71, 489-492.
30. Cohen, D. S. & Keener, J. P. (1976) Chem. Eng. Sci. 31, 115-

122.
31. Thomas, R. (1982) Adv. Chem. Phys., in press.
32. Mandel, P. & Erneux, T. (1982) Optica Acta 29, 7-21.
33. Tyson, J. J. (1973)J. Chem. Phys. 58, 3919-3930.
34. Schulmeister, T. & Sel'kov, E. E. (1978) Stud. Biophys. 72, 111-

112, and microfiche 1/24-37.
35. Schulmeister, T. (1978) Stud. Biophys. 72, 205-206, and micro-

fiche 3/14-28.
36. Degn, H. (1968) Nature (London) 217, 1047-1050.

Biophysics: Decroley and Goldbeter


