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ABSTRACT An allosteric model of an open monosubstrate enzyme reaction is
analyzed for the case where the enzyme, containing two protomers, is activated
by the product. It is shown that this system can lead to instabilities beyond which a
new state organized in time or in space (dissipative structure) can be reached.
The conditions for both types of instabilities are presented and the occurrence of
a temporal structure, consisting of a limit cycle behavior, is determined numerically
as a function of the important parameters involved in the system. Sustained os-
cillations in the product and substrate concentrations are shown to occur for
acceptable values of the allosteric and kinetic constants; moreover, they seem to
be favored by substrate activation. The model is applied to phosphofructokinase,
which is the enzyme chiefly responsible for glycolytic oscillations and which pre-
sents the same pattern of regulation as the allosteric enzyme appearing in the
model. A qualitative and quantitative agreement is obtained with the experi-
mental observations concerning glycolytic self-oscillations.

INTRODUCTION

Many studies have recently been devoted to the problem of oscillations in enzy-
matic systems. Besides circadian rhythms and periodic phenomena due to genetic
control (1) these oscillations of shorter period result from the regulation of an
enzymatic chain of reactions by its metabolites.

Most models describe the control of an enzyme by end-product inhibition (2, 3),
but positive feedback can as well be responsible for periodic behaviors. For ex-
ample, glycolytic oscillations were attributed to the activation of an enzyme by its
reaction product (4-8). Sustained oscillations are known experimentally in the
yeast glycolytic system (9) and in the peroxidase reaction (10).

The physiological role of periodic phenomena is still far from being fully under-
stood. It is conceivable that oscillations could serve to regulate the concentration
levels of some metabolites within the cell. Furthermore it has been conjectured
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that such behavior might contribute to the specification of positional information
during embryogenesis (11, 12). The interest in periodic phenomena is thus awakened
by the potentiality that they might participate in the appearance of spatially dif-
ferentiated patterns.

The coupling between spatial and temporal order in systems of chemically reacting
and diffusing components has, on the other hand, been investigated (13-18, foot-
note 1). From a thermodynamic point of view it has been shown that in such sys-
tems structures in time or in space can only maintain themselves beyond a minimal
level of energy dissipation and require specific nonlinear kinetics. Such organiza-
tions were called “dissipative structures” by Prigogine in order to underline their
far from equilibrium occurrence (19, 20).

Spatial dissipative structures corresponding to stable time independent concen-
tration patterns have been observed in organic chemistry (21, 22) in the Zhabotinsky
reaction, which is also known as a good example of a chemical clock (23). This
confirms the theoretically predicted link between both types of phenomena.

Chemical instabilities which can generate macroscopic order have been shown to
play a role in some biological systems at the cellular (24-26) and supracellular
levels (27). In this work we examine the conditions for the occurrence of dissipative
structures in a simple biochemical system described in terms of the well-assessed
theory of Monod et al. (28). The model considered represents an allosteric enzyme
activated by its product. It can be applied to the description of phosphofructokinase
which plays an essential role in glycolytic oscillations and which is known to be an
allosteric protein (9, 29).

Positive feedback is introduced in a natural way through the allosteric character
of the model without reference to nonmolecular parameters. The role of each ef-
fector in terms of parameters which have a clear experimental interpretation is
clarified: activation by the product, the influence of the substrate, and cooperativity
are related to three independent measurable quantities. Moreover, diffusion of
metabolites away from the enzyme is considered. The model therefore presents an
extension of the global models presented by Higgins (4-6) and Sel’kov (7, 8) for
oscillating glycolysis.

2. MODEL AND KINETIC EQUATIONS

We have considered the simplest model which can explain the experimental facts
(see Fig. 1): (a) the substrate is supplied at constant rate ;. (b) The enzyme is a dimer
which exists under the form R (active) and T (inactive), these forms being inter-
converted via the transition R, = T,, where R, and T, denote the forms bearing
no ligand. (¢) The substrate binds to both forms while the product which is a
positive effector of the enzyme binds exclusively to the active form. (d) The enzy-

1Lefever, R., and G. Nicolis. 1971. J. Theor. Biol. 30:267.
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FiGURE 1 Model I (see text). @, substrate; O, product.

matic forms R carrying the substrate decompose irreversibly to yield the product.
(e) The product leaves the system at a rate proportional to its concentration, with a
proportionality factor k,.

The kinetic constants for binding and dissociation for the R forms are repre-
sented by a; , d; for the substrate and a. , d, for the product. For the binding and
dissociation of the substrate for the T forms, these constants are, respectively, as
and d;. Constants k; , k. are related to the interconversion of R, into T, , while k&
is the kinetic constant related to the irreversible chemical reaction.

From a thermodynamic point of view one sees that three steps drive the system
far from equilibrium: the external constraints (a) and (e¢) on the substrate and the
product together with the irreversible decomposition of the enzymatic forms.
Denoting the concentrations of the product and the substrate, respectively, by 4.
and A4;, one can write a set of kinetic equations of the type (see Fig. 1)

dAa/dt = v; — 2a3A3T, + (dx - asAg)Tl + 2d; T,
— 2a143(Ro + Roy + Roz) + (di — a143)(Rio + Ru + Rie)
=+ 2di(Rz0 + Ra1 + Re), (1)

for the metabolites and similar equations for each enzymatic form together with
the conservation relation

Dy= >R+ YT (2)

D R is the sum over all the enzymatic forms in the active state while » T is the
corresponding sum for the inactive state.
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Furthermore, in agreement with experimental data (see the Appendix) the
following relations hold:

kl, kz, a;/As, dl, ag/Az, dz, ax/Aa, da, k>> l,
Az/Dy , As/Do > 1. (3)

This permits us to assume fast equilibration of the enzyme with respect to the
metabolites, so that the kinetic equations for the enzymatic forms reduce to alge-
braic relations by a pseudostationary-state hypothesis (30).

Let us now introduce the ‘“normalized’’ concentrations defined by Monod et al.
(28):

a = As/Kiywy, v = As/Kiyw, (4)

where K, ,zy = di/a; and K4,zy = d»/a; are the equilibrium dissociation constants
for the R forms of A; and A, , respectively. We make the change of variables

oy = n/dy, o2 = ki/a;, e = k/dy, (5)
and also put for simplicity
a = a; = a and d1=d2=d. (6)

Under these conditions, if we also take into account the diffusion of the me-
tabolites while neglecting the diffusion of the enzymatic forms, the system is de-
scribed by a set of three equations

9a _ __[2Doe/(e + D]a(1 + VI 4+ o/(e + 1)] 9-23

ar a[al L(1 4 ac®* + (1 4+ v)Yl + /(e + 1)]z]+ Da o5 s (7a)
v _  [[2Dee/(e + Dla(l + 7)1 + a/(e + 1)] _ %y
o “[ LT + ac)® + (T + A1 + o/ + DF "”] +Pgm. (76)

R=01+4+ )l + a/(c + DP/{L(1 + ac)’
+ A+ +a/e+ 1P}, (Te¢)

where ®, and D, are the diffusion coefficients of 4; and A., respectively, and
¢ = Kuym/Kayr is the nonexclusive binding coefficient giving the degree of ac-
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tivation or inhibition by the substrate. The allosteric constant L, which is equal
to the ratio T,/R, in absence of ligands, expresses the degree of cooperativity of
the enzyme.

Equations 7 a and 7 b give the time evolution of metabolites while the function
R defined as (see reference 28)

R=YR/(ZR+ XD,

relates the state of the enzyme to the metabolite concentrations.?

For simplicity, we have assumed that diffusion takes place in one dimension.
The solution of equations 7 a and 7 b is subject to boundary conditions on the
fluxes and concentrations expressing, for example, that the rate of entry of the
substrate into the system is given initially and remains time independent. As we
only study the linear stability properties around the uniform steady state in this
paper, however, we will not need to specify these conditions explicitly (see section
3).

In addition to the entry of the substrate by diffusion, equations 7 @ and 7 b in-
clude a source term (o, in equation 7 a) and a sink term (szy in equation 7 b).
Thus in the limit of uniform composition (infinitely fast diffusion) the equations
reduce to a form which expresses that at every point of the system the substrate
enters at a constant rate, produced, for example, by the cycle of reactions to which
the system (I) belongs, while the product is being removed by a first-order reaction
(7). In such a situation the influence of time delay effects due to transport phenomena
on the periodic behavior (31) need not be considered.

3. DISSIPATIVE STRUCTURES IN SYSTEM 7

System 7 admits two homogeneous stationary states (ao1, vo) and (o2, vo) Where

Yo = 01/02, (8)
and
{[Dof/(é -+ 1)]I‘2 _ 0’1[Lc -+ ]:‘2/(e + l)]} 4+ F(8)112 (9)
{oi[Lc? 4+ T2/(e + 1)2] — 2Doel?/(e + 1)2} ’
where

T'= (14 01/02),
6 = {201L[Doe/(e + DI[1/(e + 1) — c] + [Doel/(e + 1)
— a2L[1/(e + 1) — c]?}. (10)

Sign + in expression 9 is related to the root ao; .

% One verifies easily that for ¢ — O one recovers the expression for R previously derived by Monod
et al. (28).
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In order to study the stability of these states we investigate the response of system
7 to infinitesimal perturbations. As equations 7 @ and 7 b become linear in the per-
turbations with time and space independent coefficients, they admit solutions of
the form

5X = xe@th‘r/)\. ( 11 )

Inserting this in the evolution equations around the homogeneous steady state
(a0 , 70), we obtain the dispersion equation

w? + w[aC(4 — B) + 0.0 + (Do + D,)/N]
+ [a%0:CA + aC(AD,/N — BD./N) + 624D/ + DD, /N = 0. (12)

We have set

A= L + vo){ao®c[2/(e + 1) — ¢] + 2a0/(e + 1) + 1}
+ (1 4+ 7o)l + ao/(e + D],
B = 2a9L[1 + ao/(e + 1)]J(1 + ac)?,

C = 2[Doe/ (e + DI + v0)/ { L(1 + @0c)? + (1 + 70)*[1 + a0/ (e + D J2}2. (13)

It should be pointed out that the parameter \ in equation 12 is not arbitrary but
has to be consistent with the boundary conditions imposed on system 7.
If we neglect the effect of diffusion, the dispersion equation reduces to the form

w? + w[aC(4 — B) 4+ ¢.a] + a?6:CA = 0. (14)
The system has an unstable focus (32) when
C4—B)+s2<0 and 4> 0. (15)

In the phase plane the system evolves towards a limit cycle (see Fig. 2 ). One can
observe sustained oscillations in the concentrations of the product and the substrate
as a function of time (see Fig. 2 b). The linear period of these oscillations is given
by the expression

T = 2r/aC[A(B — A)]'. (16)
Let us now consider the inhomogeneous case. If we write
0 = Dy/Da, (17)

the condition for the occurrence of a spatial dissipative structure takes the form

0D%/N + a(De/N)[C(0A — B) + o3] + a?0sCA < 0. (18)
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FiGURE 2 Transition of system 7 to a limit cycle (Fig. 2 a) in the homogeneous case when
the stationary state is an unstable focus; the limit cycle can be reached from the outside.
The curve has been obtained at the analogue computer for the following set of values:
o1 =2-10%,0; =108, L = 7.5-10% ¢ = 102, Dy = 5-10~%, ¢ = 107, a = 10, Ka,z) =
K4,r) = 5-107 (see the Appendix). The stationary state is ap = 16, vo = 2. For this case
T = 145 sec. Fig. 2 b shows the time display of the process for o1 = 4:1078, 02 = 2-1078,
Then ao = 24.5, vo = 2, and T = 108 sec. (For oy = 3-10~%, 03 = 1.5-10~%, T = 120 sec.)
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We see immediately that for positive values of A4 the condition for homogeneous
instability 15 is always verified before condition 18 if we restrict ourselves to the
case @ > 1, which seems to be justified by the chemical nature of « and v in the
glycolytic example (see section 5). As the numerical study of the model shows that
the only steady state physically acceptable is the state (aoz , 7o) and that the quantity
A evaluated around it is always positive, a homogeneous instability of the stationary
state will occur before an instability with respect to diffusion. The numerical study
also shows that this remains true for values of § down to 0.1. Thus the previous
conclusion extends to all cases for which the substrate and the product are molecules
which do not differ greatly from one another. Therefore we restrict ourselves
hereafter to the problem of temporal structures only.

4. NUMERICAL STUDY

Since we could not obtain an explicit instability condition for the homogeneous
case as a function of a critical value of one of the parameters, we have studied
numerically stability of the allosteric model (I) as a function of the most important
parameters involved: o, , € (related, respectively, to the rate of entrance of the sub-
strate and the irreversible decomposition of the enzymatic complexes), ¢, and L.

In this way a set of stability diagrams L — ¢, L — ¢, and L — o, has been con-
structed, some of which are shown in Figs. 3-5. The choice for the mean values of
the different constants is justified in the Appendix. In order to establish those
diagrams, expression 15 was evaluated on a digital computer around the steady
states (ao1 , 7o) and (aoz , 70).

logc
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FiGURE 3  Stability diagrams L — ¢. Domains I and III lie, respectively, to the left and to
the right of the curves while domain II is the enclosed region. The stationary state remains
stable in region I and becomes an unstable focus within region II. Region III does not
contain any physically acceptable steady state. Curve (a) has been established for ¢ = 103
and curve (b) for ¢ = 107 Other constants are: o1 = 1078, g3 = 5-10~°, D, = 5-10~.
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FIGURE 4 Stability diagrams L — e. Curve (a) has been established for ¢ = 1072, curve
(b) for ¢ = 2 and curve (c) for ¢ = 5. Other constants are: o, = 108,02 = 5:107%, Dy =
5-10-. For curve (b), o1 = 10~°, o3 = 5-10710,
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FiGure 5 Stability diagrams L — o,. Curve (@): ¢ = 1072, ¢ = 101 Curve (b): ¢ = 0.5,
e = 1071 Curve (¢): ¢ = 1.2, ¢ = 1072 Other constants are: o3 = ¢1/2, Do = 5-1074

The system remains stable within domain I. Limit cycles can be observed in
domain II while region III does not contain any physically acceptable steady state.

A survey of the diagrams enables us to deduce the following trends:

(@) Instabilities will occur preferentially for large values of the allosteric constant
(L > 10%) (see Figs. 34,3 b, 4 ¢, 5 a, 5 b), this order of magnitude being in agree-
ment with experimental observations concerning the values of L for allosteric
enzymes (see e.g., reference 29).

(b) The range of instability increases with the degree of activation by the sub-
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strate (0 < ¢ < 1). The system can still become unstable in presence of substrate
inhibition (e.g., ¢ = 1.2, 2) but the domain of oscillations is then reduced as com-
pared with the previous case (see diagrams L — ¢ and diagrams L — o, for different
values of ¢).

By increasing inhibition, oscillations disappear and the diagram divides into two
regions. In one of them the system remains stable while in the other there is no
physically acceptable steady state. In physical terms this means that the substrate
accumulates in such a way that the enzyme cannot follow any longer (see diagram
L — efor ¢ = 5).

This is likely to happen when o1, ¢ as well as L are too large or when ¢ becomes
too small. Indeed, the substrate can accumulate when the rate of its entrance ex-
ceeds the possibilities of its consumption by the system, which depend on Dy, e.
The same happens when the inactive form of the enzyme increases at the expense
of the active one for large values of ¢ and L.

(c) The values of ¢, for which instabilities occur are in an acceptable physiological
range (see the Appendix).

(d) The same remark holds for e. Moreover in presence of substrate activation,
instabilities can occur for a wide range of values of ¢ once the cooperativity exceeds
a certain level.

(e) Another prediction resulting from the numerical study concerns the range of
oscillations of the fraction R. It has been found that there exists a domain of oscilla-
tions in which the enzyme is largely under the form 7. For low values of ¢, the
enzyme can also oscillate under the active form.

5. DISCUSSION OF THE APPLICATION TO GLYCOLYTIC
OSCILLATIONS

The self-oscillating behavior of some intermediates of the yeast glycolytic system
has been studied extensively. The results have first been obtained from experiments
on yeast cells (33-35) and later on muscle and yeast extracts (36-38). An account
of the present state of the question can be found in the papers of Hess et al. (9, 39).

It is known (4, 39) that the glycolytic enzyme chiefly responsible for these peri-
odicities is phosphofructokinase because of the peculiar way in which it is regulated.
In the yeast this allosteric enzyme is indeed activated by its two products, adenosine
diphosphate (ADP), via adenosine monophosphate (AMP), and fructose-diphos-
phate (FDP), while it is inhibited by an excess of adenosine triphosphate (ATP),
the first of its substrates, and activated by the second, fructose-6-phosphate (F-6-P)
(35, 39). Experimental observations show that the enzyme is regulated under
physiological conditions by the couple ATP/ADP (9, 39).

In a recent paper (40) Betz and Sel’kov confirm these results but show that in the
presence of all the effectors in concentrations similar to those found in the oscil-
lating cell-free extract, this regulatory scheme is different. Under those conditions,
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ATP has no influence on the activity of phosphofructokinase while AMP and F-6-P
are effective activators of the enzyme. The effect of AMP can be linked to that
of ADP because of the activity of adenylate kinase; moreover both chemicals are
always in phase during glycolytic oscillations (39, 40).

Product activation is in fact the essential prerequisite for sustained oscillations.
It is on this ground that Higgins (4-6) and Sel’kov (7, 8) have presented global
models for the phosphofructokinase reaction. The analytical expressions derived
by Sel’kov give a qualitative and, in some regards, quantitative account of self-
oscillations in glycolysis.

The allosteric model (I) can be applied to phosphofructokinase since the product
ADP is a positive effector of the enzyme. Then substrate o denotes ATP while v
denotes ADP. Experimental studies have shown that in some organisms, like
Escherichia coli (29), the enzyme could be a tetramer. One can expect, however,
that the behavior as described by a dimer remains qualitatively the same.

The evolution of the system has been followed at the analogue computer for
various situations. Sustained oscillations obtained with the model (Fig. 2 b) agree
with experimental observations (see e.g., references 9, 39). The period of oscillations
is of the order of some minutes while the order of magnitude of the concentrations
Az, Ay is 1074103 M if we take Ky, 2y = Ka,my = 5-1075 M (see the Appendix and
reference 29). The ratio 4;/ A4, (= ATP/ADP) can vary within the whole range of
experimental data but is usually close to five at the stationary state (38, 40). More-
over, when the system has just entered the region of instability, the period of oscil-
lations corresponds to that given by relation 16.

In order to verify on the model the experiments of Hess et al. (39) we followed the
behavior for different values of o, . Hess has shown that the glycolytic system re-
mains stable as long as the rate of supply of the substrate is less than 20 mMm/hr,
which corresponds to o; = 10~% mM (see the Appendix). Then by increasing this
rate oscillations appear. Further increases promote a change in the nature of oscil-
lations and a shortening of the period. When the rate exceeds 160 mm/hr the system
jumps to a higher stationary state.

The trends of this evolution are depicted by diagram L — ¢ (Fig. 5 a), where the
accumulation of the substrate in domain III can stand for the higher steady state.
When o is held constant, it has been shown that as ¢, increases the amplitude of
the oscillations passes through a maximum while the period decreases. This is in
agreement with experimental facts (39).

An observation which can possibly bear a physiological significance concerns the
mean values of « and v on a period T. By adding equations 7 a and 7 b and neglect-
ing diffusion terms we obtain successively

d(e + v)/dt = 01 — 097, (19)

am | "da + )/didt = 0 = oy — (on/T) i d,  (20)
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hence

(’Y)r = ¢1/02 = ¥0. (21)

So the mean value of ¥ during a period, denoted here by (y)r, is equal to the
steady-state value. This is not the case for a. Indeed we see on the graphs obtained
at the analogue computer that the mean value {a)r can be less than «g . Self-oscil-
lations can perhaps contribute to decrease the mean concentration of the substrate
with respect to that of the product when the supply of the former becomes too high.

Another prediction resulting from this study is that sustained oscillations seem
to be favored by substrate activation. This fact is in agreement with the experi-
mental observations of Betz et al. (40) if we consider the total effect of both sub-
strates, ATP and F-6-P. Clearly, such an effect can only be described unambiguously
in an allosteric model in which the role of the substrate is entirely determined by
the nonexclusive binding coefficient c.

The problem of spatial organization has not been considered since, as we have
discussed it in a previous section, instability with respect to homogeneous perturba-
tions occurs before that with respect to diffusion. It is possible, however, that the
system moves first toward a temporal organization; the limit cycle so formed could
become subsequently unstable with respect to diffusion, as it seems to happen ex-
perimentally in the Zhabotinsky reaction (22). The system could then evolve toward
a new dissipative structure which would depend on space. This point is currently
under investigation. Preliminary studies® show that model systems undergoing
nonlinear kinetics may evolve, beyond instability, to a spatiotemporal organization
corresponding to a propagating concentration wave.

APPENDIX
Numerical Values of the Parameters Appearing in the Model

Kinetic studies have shown that phosphofructokinase from E. coli can be described in terms
of a perfect K-system, while our model represents a mixed K-V-system in Monod’s termi-
nology (28, 29). In applying model I to the description of oscillations which are observed in
the yeast glycolytic system, we have chosen the nearest set of numerical values available,
which is that concerning the phosphofructokinase of E. coli.

The allosteric constant L was thus given a value around 4-10° which was found experi-
mentally for this system by Blangy et al. (29). The same source provides data for the equi-
librium dissociation constants of 43 and A4: . We have taken on this ground

Kiyry =~ Kaymy =~ 5-10~2 mm (reference 29).

Constant ¢ = a1 = a2 was chosen equal to 10’/mMm-sec in order to give the period T an
acceptable range (see relation 16). Hence d = di = d» = 5-105/sec.

$ Herschkowitz-Kaufman, M., and G. Nicolis. 1972. J. Chem. Phys. 56:1890.
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Relations 5 together with the experimental data cited by Hess et al. (39) yield o3 & 10~8
mM. As we have

Yo = 01/oy = A3/Kaymy ~ 1071 mM/5-10~2 mM = 2,

(38, 40) we took o2 equal to 5-10~° mm, which value gives for the rate of sink of ADP the
acceptable value

k,As = 5-10~% mM/sec.

Constant e was given the value 103 so that kR, e.g. is of the order of 5-10~% mM/sec,
if we take Ryo R 1075 mm.

The nonexclusive binding coefficient ¢ related to 43 was taken equal to 1072, in order to
take into account the total activating effect of the two substrates in the glycolytic example (40).
Eventually the total concentration in enzyme Do was taken equal to 5-10—4 mm (39).
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